Jing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4399496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High ethanol tolerance of oil-in-water Pickering emulsions stabilized by protein nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127777.	4.7	7
2	Mesoporous MXene/ZnO nanorod hybrids of high surface area for UV-activated NO2 gas sensing in ppb-level. Sensors and Actuators B: Chemical, 2022, 353, 131087.	7.8	40
3	UV-activated WS2/SnO2 2D/0D heterostructures for fast and reversible NO2 gas sensing at room temperature. Sensors and Actuators B: Chemical, 2022, 364, 131903.	7.8	29
4	Visible Light-Induced Room-Temperature Formaldehyde Gas Sensor Based on Porous Three-Dimensional ZnO Nanorod Clusters with Rich Oxygen Vacancies. ACS Omega, 2022, 7, 22861-22871.	3.5	4
5	In/Fe Cospinning Nanowires for Triethylamine Gas Sensing. ACS Applied Nano Materials, 2022, 5, 9554-9566.	5.0	3
6	Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances. Ceramics International, 2021, 47, 7353-7368.	4.8	103
7	MXene/WS ₂ hybrids for visible-light-activated NO ₂ sensing at room temperature. Chemical Communications, 2021, 57, 9136-9139.	4.1	34
8	Mesoporous ZnO nanosheets with rich surface oxygen vacancies for UV-activated methane gas sensing at room temperature. Sensors and Actuators B: Chemical, 2021, 333, 129547.	7.8	54
9	Emulsions stabilized by highly hydrophilic TiO2 nanoparticles via van der Waals attraction. Journal of Colloid and Interface Science, 2021, 589, 378-387.	9.4	26
10	Gas sensing materials roadmap. Journal of Physics Condensed Matter, 2021, 33, 303001.	1.8	49
11	High-performance room temperature NO2 gas sensor based on visible light irradiated In2O3 nanowires. Journal of Alloys and Compounds, 2021, 867, 159076.	5.5	74
12	Design and characterization of starch/solid lipids hybrid microcapsules and their thermal stability with menthol. Food Hydrocolloids, 2021, 116, 106631.	10.7	13
13	Ti2CTx MXene: A novel p-type sensing material for visible light-enhanced room temperature methane detection. Ceramics International, 2021, 47, 34437-34442.	4.8	33
14	Designed synthesis of ZnO/Pd@ZIF-8 hybrid structure for highly sensitive and selective detection of methane in the presence of NO2. Sensors and Actuators B: Chemical, 2021, 344, 130220.	7.8	22
15	Nanorod-pillared mesoporous rGO/ZnO/Au hybrids for photocatalytic Cr (VI) reduction: Enhanced Cr(VI) adsorption and solar energy harvest. Ceramics International, 2020, 46, 1487-1493.	4.8	29
16	Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visible-light-modulated dual selectivity to NO2 and NH3. Journal of Hazardous Materials, 2020, 381, 120919.	12.4	168
17	Visible-light photocatalysis enhanced room-temperature formaldehyde gas sensing by MoS2/rGO hybrids. Sensors and Actuators B: Chemical, 2020, 304, 127317.	7.8	65
18	Unraveling photoexcited electron transfer pathway of oxygen vacancy-enriched ZnO/Pd hybrid toward visible light-enhanced methane detection at a relatively low temperature. Applied Catalysis B: Environmental, 2020, 264, 118554.	20.2	45

JING WANG

#	Article	IF	CITATIONS
19	Sulfur-Vacancy-Enriched MoS ₂ Nanosheets Based Heterostructures for Near-Infrared Optoelectronic NO ₂ Sensing. ACS Applied Nano Materials, 2020, 3, 665-673.	5.0	52
20	A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis. Sensors and Actuators B: Chemical, 2020, 304, 127334.	7.8	47
21	Montmorillonite and alginate co-stabilized biocompatible Pickering emulsions with multiple-stimulus tunable rheology. Journal of Colloid and Interface Science, 2020, 562, 529-539.	9.4	39
22	Highly sensitive, fast and reversible NO2 sensors at room-temperature utilizing nonplasmonic electrons of ZnO/Pd hybrids. Ceramics International, 2020, 46, 8462-8468.	4.8	25
23	Highly Sensitive and Fast Optoelectronic Room-Temperature NO ₂ Gas Sensor Based on ZnO Nanorod-Assembled Macro-/Mesoporous Film. ACS Applied Electronic Materials, 2020, 2, 580-589.	4.3	44
24	Synergistic effects of UV activation and surface oxygen vacancies on the room-temperature NO2 gas sensing performance of ZnO nanowires. Sensors and Actuators B: Chemical, 2019, 298, 126858.	7.8	79
25	UV-enhanced NO ₂ gas sensing properties of polystyrene sulfonate functionalized ZnO nanowires at room temperature. Inorganic Chemistry Frontiers, 2019, 6, 176-183.	6.0	22
26	Synthesis of octahedral-like ZnO/ZnFe2O4 heterojunction photocatalysts with superior photocatalytic activity. Solid State Sciences, 2019, 96, 105901.	3.2	49
27	On-chip grown ZnO nanosheet-array with interconnected nanojunction interfaces for enhanced optoelectronic NO2 gas sensing at room temperature. Journal of Colloid and Interface Science, 2019, 554, 19-28.	9.4	30
28	Colloidal TiO2 nanoparticles with near-neutral wettability: An efficient Pickering emulsifier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 224-232.	4.7	26
29	Effects of Cationic Polyacrylamide on Hydrothermal Formation of Ultralong α aSO ₄ ·0.5H ₂ O Whiskers. Crystal Research and Technology, 2019, 54, 1800224.	1.3	4
30	Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceramics International, 2018, 44, 7357-7377.	4.8	369
31	Facile synthesis of mesoporous ZnO sheets assembled by small nanoparticles for enhanced NO2 sensing performance at room temperature. Sensors and Actuators B: Chemical, 2018, 270, 207-215.	7.8	42
32	Near infrared light enhanced room-temperature NO2 gas sensing by hierarchical ZnO nanorods functionalized with PbS quantum dots. Sensors and Actuators B: Chemical, 2018, 255, 2538-2545.	7.8	73
33	Enhanced Cycling Stability through Erbium Doping of LiMn2O4 Cathode Material Synthesized by Sol-Gel Technique. Materials, 2018, 11, 1558.	2.9	11
34	3D Architectured Graphene/Metal Oxide Hybrids for Gas Sensors: A Review. Sensors, 2018, 18, 1456.	3.8	83
35	Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection. Sensors and Actuators B: Chemical, 2018, 276, 526-533.	7.8	95
36	Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Applied Catalysis B: Environmental, 2017, 206, 406-416.	20.2	333

JING WANG

#	Article	IF	CITATIONS
37	Facile synthesis of orthorhombic LiMnO2 nanorods by in-situ carbothermal reduction: Promising cathode material for Li ion batteries. Ceramics International, 2017, 43, 10585-10589.	4.8	35
38	Visible-light-driven photocatalytic reduction of Cr(<scp>vi</scp>) on magnetite/carboxylate-rich carbon sheets. New Journal of Chemistry, 2017, 41, 12596-12603.	2.8	22
39	Reduced graphene oxide/MoS2 hybrid films for room-temperature formaldehyde detection. Materials Letters, 2017, 189, 42-45.	2.6	41
40	Cost-effective large-scale synthesis of oxygen-defective ZnO photocatalyst with superior activities under UV and visible light. Ceramics International, 2017, 43, 1870-1879.	4.8	35
41	A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application. Crystals, 2016, 6, 148.	2.2	91
42	Confined Formation of Ultrathin ZnO Nanorods/Reduced Graphene Oxide Mesoporous Nanocomposites for High-Performance Room-Temperature NO ₂ Sensors. ACS Applied Materials & Interfaces, 2016, 8, 35454-35463.	8.0	210
43	Nanoseed-assisted rapid formation of ultrathin ZnO nanorods for efficient room temperature NO2 detection. Ceramics International, 2016, 42, 15876-15880.	4.8	25
44	Hierarchical ZnO Nanosheet-Nanorod Architectures for Fabrication of Poly(3-hexylthiophene)/ZnO Hybrid NO ₂ Sensor. ACS Applied Materials & Interfaces, 2016, 8, 8600-8607.	8.0	106
45	Defect-rich ZnO nanosheets of high surface area as an efficient visible-light photocatalyst. Applied Catalysis B: Environmental, 2016, 192, 8-16.	20.2	231
46	Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sensors and Actuators B: Chemical, 2016, 230, 330-336.	7.8	161
47	Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sensors and Actuators B: Chemical, 2016, 222, 864-870.	7.8	169
48	Reduced graphene oxide/hierarchical flower-like zinc oxide hybrid films for room temperature formaldehyde detection. Sensors and Actuators B: Chemical, 2015, 221, 1290-1298.	7.8	67
49	Ultra-rapid formation of ZnO hierarchical structures from dilution-induced supersaturated solutions. CrystEngComm, 2014, 16, 7115-7123.	2.6	36
50	Effect of Mg ²⁺ on Hydrothermal Formation of α-CaSO ₄ ·0.5H ₂ O Whiskers with High Aspect Ratios. Langmuir, 2014, 30, 9804-9810.	3.5	75
51	Defects-Induced Room Temperature Ferromagnetism in ZnO Nanorods Grown from ε-Zn(OH) ₂ . Journal of Physical Chemistry C, 2014, 118, 19469-19476.	3.1	47
52	Influence of doping concentration on the properties of ZnO:Mn thin films by sol–gel method. Vacuum, 2007, 81, 894-898.	3.5	66