
Javier Grandal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4398906/publications.pdf Version: 2024-02-01

LAVIED C.DANDAL

#	Article	IF	CITATIONS
1	Non-treated low temperature indium tin oxide fabricated in oxygen-free environment to low-cost silicon-based solar technology. Vacuum, 2021, 184, 109783.	3.5	3
2	Structural and optical properties of self-assembled AlN nanowires grown on SiO ₂ /Si substrates by molecular beam epitaxy. Nanotechnology, 2021, 32, 195601.	2.6	4
3	Roles of Low Temperature Sputtered Indium Tin Oxide for Solar Photovoltaic Technology. Materials, 2021, 14, 7758.	2.9	3
4	Magnetization process of a ferromagnetic nanostrip under the influence of a surface acoustic wave. Scientific Reports, 2020, 10, 9413.	3.3	8
5	Quasiparticle tunnel electroresistance in superconducting junctions. Nature Communications, 2020, 11, 658.	12.8	19
6	ITO-Based Selective Contacts for Silicon Solar Devices. , 2018, , .		0
7	Effect of different buffer layers on the quality of InGaN layers grown on Si. AIP Advances, 2018, 8, 105026.	1.3	3
8	Tailoring of microstructure and optoelectronic properties of Aluminum doped Zinc Oxide changing gun tilt. Materials Science in Semiconductor Processing, 2017, 63, 115-121.	4.0	8
9	High Resolution Studies of Oxide Multiferroic Interfaces in the Aberration-Corrected STEM. Microscopy and Microanalysis, 2017, 23, 1592-1593.	0.4	Ο
10	Exciton recombination at crystal-phase quantum rings in GaAs/In <i>x</i> Ga1â^' <i>x</i> As core/multishell nanowires. Applied Physics Letters, 2016, 109, .	3.3	10
11	Plan-view transmission electron microscopy investigation of GaAs/(In,Ga)As core-shell nanowires. Applied Physics Letters, 2014, 105, 121602.	3.3	16
12	Influence of fabrication steps on optical and electrical properties of InN thin films. Semiconductor Science and Technology, 2014, 29, 095010.	2.0	1
13	Coaxial Multishell (In,Ga)As/GaAs Nanowires for Near-Infrared Emission on Si Substrates. Nano Letters, 2014, 14, 2604-2609.	9.1	111
14	Investigation of III–V Nanowires by Plan-View Transmission Electron Microscopy: InN Case Study. Microscopy and Microanalysis, 2014, 20, 1471-1478.	0.4	5
15	Self-Regulated Radius of Spontaneously Formed GaN Nanowires in Molecular Beam Epitaxy. Nano Letters, 2013, 13, 3274-3280.	9.1	104
16	Spectrum-optimized Si-based III-V multijunction photovoltaics. Proceedings of SPIE, 2012, , .	0.8	15
17	Growth and characterization of InGaAs quantum dots on metamorphic GaAsP templates by molecular beam epitaxy. , 2012, , .		1
18	Lattice-matched GaP/SiGe virtual substrates for low-dislocation density GaInP/GaAsP/Si solar cells. , 2012, , .		1

JAVIER GRANDAL

#	Article	IF	CITATIONS
19	Oxygen photo-adsorption related quenching of photoluminescence in group-III nitride nanocolumns. Superlattices and Microstructures, 2012, 52, 165-171.	3.1	14
20	Evidence of charge carrier number fluctuations in InN thin films?. , 2011, , .		0
21	Radiative defects in GaN nanocolumns: Correlation with growth conditions and sample morphology. Applied Physics Letters, 2011, 98, 083104.	3.3	34
22	Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks. Journal of Crystal Growth, 2011, 325, 89-92.	1.5	97
23	Expanding the palette: Metamorphic strategies over multiple lattice constant ranges for extending the spectrum of accessible photovoltaic materials. , 2011, , .		10
24	Volume charge carrier number fluctuations probed by low frequency noise measurements in InN layers. Applied Physics Letters, 2011, 98, 252104.	3.3	8
25	Decoupling single nanowire mobilities limited by surface scattering and bulk impurity scattering. Journal of Applied Physics, 2011, 110, 033705.	2.5	11
26	InN/InGaN multiple quantum wells emitting at 1.5â€,μm grown by molecular beam epitaxy. Applied Physics Letters, 2011, 98, .	3.3	24
27	GaN and InN nanocolumns as electrochemical sensing elements: Potentiometric response to KCl, pH and urea. Materials Letters, 2010, 64, 1332-1335.	2.6	17
28	Optical properties of InN grown on Si(111) substrate. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1066-1069.	1.8	16
29	Investigation of InN layers grown by molecular beam epitaxy on GaN templates. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1079-1082.	1.8	4
30	Electron Accumulation Layers in InN Nanocolumns Studied by Raman Scattering. , 2010, , .		0
31	InN nanocolumns grown by plasma-assisted molecular beam epitaxy on A-plane GaN templates. Applied Physics Letters, 2009, 94, 221908.	3.3	9
32	Direct immobilization of enzymes in GaN and InN nanocolumns: The urease case study. Applied Physics Letters, 2009, 95, 113701.	3.3	11
33	Determining surface Fermi level pinning position of InN nanowires using electrolyte gating. Applied Physics Letters, 2009, 95, .	3.3	16
34	Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.511/4m. Microelectronics Journal, 2009, 40, 349-352.	2.0	4
35	A growth diagram for plasma-assisted molecular beam epitaxy of GaN nanocolumns on Si(111). Journal of Applied Physics, 2009, 106, .	2.5	110
36	InN Nanocolumns. , 2009, , 599-615.		1

3

JAVIER GRANDAL

#	ARTICLE	IF	CITATIONS
37	Raman scattering by coupled plasmon-LO phonons in InN nanocolumns. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1562-1564.	0.8	2
38	Space charged region in GaN and InN nanocolumns investigated by atomic force microscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1609-1611.	0.8	1
39	Raman scattering by longitudinal optical phonons in InN nanocolumns grown on Si(1 1 1) and Si(0 0 1) substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2087-2090.	2.7	8
40	Band bending at the surfaces of In-rich InGaN alloys. Journal of Applied Physics, 2008, 104, .	2.5	33
41	Accommodation mechanism of InN nanocolumns grown on Si(111) substrates by molecular beam epitaxy. Applied Physics Letters, 2007, 91, 021902.	3.3	66
42	Evidence of electron accumulation at nonpolar surfaces of InN nanocolumns. Applied Physics Letters, 2007, 90, 262110.	3.3	81
43	Phonon-plasmon coupling in electron surface accumulation layers in InN nanocolumns. Physical Review B, 2007, 76, .	3.2	41
44	Coupled Longitudinal Optical Phonon-Plasmon Modes in InN Nanocolumns. AIP Conference Proceedings, 2007, , .	0.4	0
45	Inelastic light scattering spectroscopy of semiconductor nitride nanocolumns. Physica Status Solidi (B): Basic Research, 2007, 244, 2838-2846.	1.5	4
46	Growth, morphology, and structural properties of group-III-nitride nanocolumns and nanodisks. Physica Status Solidi (B): Basic Research, 2007, 244, 2816-2837.	1.5	148
47	Epitaxial growth and characterization of InN nanorods and compact layers on silicon substrates. Physica Status Solidi (B): Basic Research, 2006, 243, 1490-1493.	1.5	30
48	InN layers grown on silicon substrates: effect of substrate temperature and buffer layers. Journal of Crystal Growth, 2005, 278, 373-377.	1.5	48
49	Morphology and optical properties of InN layers grown by molecular beam epitaxy on silicon substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2289-2292.	0.8	22