Hong-Jie Peng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4398818/hong-jie-peng-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 19,508 141 139 h-index g-index citations papers 22,652 163 7.38 13.5 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
141	A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries. <i>Journal of Energy Chemistry</i> , 2022 , 68, 548-555	12	2
140	The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithium ulfur batteries. <i>Journal of Energy Chemistry</i> , 2022 , 64, 568-573	12	10
139	A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts. <i>Journal of Energy Chemistry</i> , 2022 , 64, 263-275	12	6
138	Trends in oxygenate/hydrocarbon selectivity for electrochemical CO reduction to C products <i>Nature Communications</i> , 2022 , 13, 1399	17.4	6
137	Oxygen Coordination on Fe-N-C to Boost Oxygen Reduction Catalysis. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 517-524	6.4	7
136	A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1, 38-50		69
135	A Self-Limited Free-Standing Sulfide Electrolyte Thin Film for All-Solid-State Lithium Metal Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2101985	15.6	22
134	Dynamics and Hysteresis of Hydrogen Intercalation and Deintercalation in Palladium Electrodes: A Multimodal In Situ X-ray Diffraction, Coulometry, and Computational Study. <i>Chemistry of Materials</i> , 2021 , 33, 5872-5884	9.6	2
133	Selective Permeable Lithium-Ion Channels on Lithium Metal for Practical Lithium-Sulfur Pouch Cells. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18031-18036	16.4	21
132	The role of atomic carbon in directing electrochemical CO(2) reduction to multicarbon products. <i>Energy and Environmental Science</i> , 2021 , 14, 473-482	35.4	25
131	A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. <i>Journal of Energy Chemistry</i> , 2021 , 56, 391-394	12	16
130	Selective Permeable Lithium-Ion Channels on Lithium Metal for Practical LithiumBulfur Pouch Cells. <i>Angewandte Chemie</i> , 2021 , 133, 18179-18184	3.6	4
129	Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO. <i>Chem Catalysis</i> , 2021 , 1, 663-680		11
128	Guiding the Catalytic Properties of Copper for Electrochemical CO Reduction by Metal Atom Decoration. ACS Applied Materials & Interfaces, 2021,	9.5	2
127	New insights into flead lithium[during stripping in lithium metal batteries. <i>Journal of Energy Chemistry</i> , 2021 , 62, 289-294	12	33
126	REktitelbild: Electrochemical Phase Evolution of Metal-Based Pre-Catalysts for High-Rate Polysulfide Conversion (Angew. Chem. 23/2020). <i>Angewandte Chemie</i> , 2020 , 132, 9278-9278	3.6	1
125	Scalable Construction of Hollow Multishell Co3O4 with Mitigated Interface Reconstruction for Efficient Lithium Storage. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000667	4.6	12

(2020-2020)

124	Electrochemical Phase Evolution of Metal-Based Pre-Catalysts for High-Rate Polysulfide Conversion. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9011-9017	16.4	106
123	Electrochemical Phase Evolution of Metal-Based Pre-Catalysts for High-Rate Polysulfide Conversion. <i>Angewandte Chemie</i> , 2020 , 132, 9096-9102	3.6	21
122	Review on nanomaterials for next-generation batteries with lithium metal anodes. <i>Nano Select</i> , 2020 , 1, 94-110	3.1	9
121	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semi-Immobilized Redox Mediators in Working Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17670-17675	16.4	26
120	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semi-Immobilized Redox Mediators in Working Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 17823-17828	3.6	3
119	Sandwich-like Catalyst¶arbon¶atalyst Trilayer Structure as a Compact 2D Host for Highly Stable LithiumBulfur Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 12227-12236	3.6	3
118	Sodiophilicity/potassiophilicity chemistry in sodium/potassium metal anodes. <i>Journal of Energy Chemistry</i> , 2020 , 51, 1-6	12	32
117	Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12636-12652	16.4	230
116	A Supramolecular Electrolyte for Lithium-Metal Batteries. <i>Batteries and Supercaps</i> , 2020 , 3, 5-5	5.6	
115	A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes. <i>Journal of Energy Chemistry</i> , 2020 , 48, 203-207	12	51
114	Advanced energy materials for flexible batteries in energy storage: A review. SmartMat, 2020, 1,	22.8	93
113	Ion-Solvent Chemistry-Inspired Cation-Additive Strategy to Stabilize Electrolytes for Sodium-Metal Batteries. <i>CheM</i> , 2020 , 6, 2242-2256	16.2	49
112	From electricity to fuels: Descriptors for C1 selectivity in electrochemical CO2 reduction. <i>Applied Catalysis B: Environmental</i> , 2020 , 279, 119384	21.8	37
111	Direct Intermediate Regulation Enabled by Sulfur Containers in Working LithiumBulfur Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 22334-22339	3.6	6
110	Direct Intermediate Regulation Enabled by Sulfur Containers in Working Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 22150-22155	16.4	25
109	Dictating High-Capacity LithiumBulfur Batteries through Redox-Mediated Lithium Sulfide Growth. <i>Small Methods</i> , 2020 , 4, 1900344	12.8	58
108	Lithium-Schwefel-Batterien mit Magerelektrolyt: Herausforderungen und Perspektiven. <i>Angewandte Chemie</i> , 2020 , 132, 12736-12753	3.6	17
107	A Supramolecular Electrolyte for Lithium-Metal Batteries. <i>Batteries and Supercaps</i> , 2020 , 3, 47-51	5.6	12

106	Sandwich-like Catalyst-Carbon-Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12129-12138	16.4	65
105	Sulfur Redox Reactions at Working Interfaces in LithiumBulfur Batteries: A Perspective. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1802046	4.6	95
104	Graphene-based Fe-coordinated framework porphyrin as an interlayer for lithiumBulfur batteries. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 615-619	7.8	33
103	From Supramolecular Species to Self-Templated Porous Carbon and Metal-Doped Carbon for Oxygen Reduction Reaction Catalysts. <i>Angewandte Chemie</i> , 2019 , 131, 5017-5021	3.6	6
102	From Supramolecular Species to Self-Templated Porous Carbon and Metal-Doped Carbon for Oxygen Reduction Reaction Catalysts. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4963-4967	16.4	47
101	Current-density dependence of Li2S/Li2S2 growth in lithiumBulfur batteries. <i>Energy and Environmental Science</i> , 2019 , 12, 2976-2982	35.4	67
100	Nonuniform Redistribution of Sulfur and Lithium upon Cycling: Probing the Origin of Capacity Fading in LithiumBulfur Pouch Cells. <i>Energy Technology</i> , 2019 , 7, 1900111	3.5	24
99	Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2019 , 31, e1903813	24	215
98	Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithiumBulfur batteries. <i>InformathEmaterity</i> , 2019 , 1, 533-541	23.1	196
97	Carbon materials for traffic power battery. <i>ETransportation</i> , 2019 , 2, 100033	12.7	28
96	pH effects on the electrochemical reduction of CO towards C products on stepped copper. <i>Nature Communications</i> , 2019 , 10, 32	17.4	207
95	Innentitelbild: Activating Inert Metallic Compounds for High-Rate LithiumBulfur Batteries Through In Situ Etching of Extrinsic Metal (Angew. Chem. 12/2019). <i>Angewandte Chemie</i> , 2019 , 131, 3692-3692	3.6	1
94	Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1802768	21.8	347
93	Activating Inert Metallic Compounds for High-Rate Lithium-Sulfur Batteries Through In Situ Etching of Extrinsic Metal. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3779-3783	16.4	204
92	Activating Inert Metallic Compounds for High-Rate LithiumBulfur Batteries Through In Situ Etching of Extrinsic Metal. <i>Angewandte Chemie</i> , 2019 , 131, 3819-3823	3.6	34
91	Lithium Metal Anodes: Artificial Soft R igid Protective Layer for Dendrite-Free Lithium Metal Anode (Adv. Funct. Mater. 8/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870049	15.6	12
90	Porphyrin Organic Framework Hollow Spheres and Their Applications in Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2018 , 30, e1707483	24	118
89	Porphyrin-Derived Graphene-Based Nanosheets Enabling Strong Polysulfide Chemisorption and Rapid Kinetics in LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1800849	21.8	172

(2017-2018)

88	IonBolvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode. Angewandte Chemie, 2018 , 130, 742-745	3.6	22
87	Artificial Soft B igid Protective Layer for Dendrite-Free Lithium Metal Anode. <i>Advanced Functional Materials</i> , 2018 , 28, 1705838	15.6	355
86	Innentitelbild: IonBolvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode (Angew. Chem. 3/2018). <i>Angewandte Chemie</i> , 2018 , 130, 606-606	3.6	
85	Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes. <i>Energy Storage Materials</i> , 2018 , 10, 199-205	19.4	165
84	Heterogeneous/Homogeneous Mediators for High-Energy-Density LithiumBulfur Batteries: Progress and Prospects. <i>Advanced Functional Materials</i> , 2018 , 28, 1707536	15.6	197
83	A Bifunctional Perovskite Promoter for Polysulfide Regulation toward Stable Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2018 , 30, 1705219	24	228
82	A Review of Functional Binders in Lithium Bulfur Batteries. Advanced Energy Materials, 2018, 8, 1802107	21.8	203
81	The Radical Pathway Based on a Lithium-Metal-Compatible High-Dielectric Electrolyte for Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16732-16736	16.4	107
80	The Radical Pathway Based on a Lithium-Metal-Compatible High-Dielectric Electrolyte for LithiumBulfur Batteries. <i>Angewandte Chemie</i> , 2018 , 130, 16974-16978	3.6	25
79	Solvent-Engineered Scalable Production of Polysulfide-Blocking Shields to Enhance Practical LithiumBulfur Batteries. <i>Small Methods</i> , 2018 , 2, 1800100	12.8	20
78	Porphyrin Organic Frameworks: Porphyrin Organic Framework Hollow Spheres and Their Applications in LithiumBulfur Batteries (Adv. Mater. 23/2018). <i>Advanced Materials</i> , 2018 , 30, 1870160	24	4
77	Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 734-737	16.4	140
76	Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. <i>Energy Storage Materials</i> , 2017 , 8, 194-201	19.4	133
75	Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries. <i>CheM</i> , 2017 , 2, 258-270	16.2	411
74	An Analogous Periodic Law for Strong Anchoring of Polysulfides on Polar Hosts in Lithium Sulfur Batteries: S- or Li-Binding on First-Row Transition-Metal Sulfides?. <i>ACS Energy Letters</i> , 2017 , 2, 795-801	20.1	203
73	A Quinonoid-Imine-Enriched Nanostructured Polymer Mediator for Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2017 , 29, 1606802	24	107
72	Beaver-dam-like membrane: A robust and sulphifilic MgBO2(OH)/CNT/PP nest separator in Li-S batteries. <i>Energy Storage Materials</i> , 2017 , 8, 153-160	19.4	63
71	Review on High-Loading and High-Energy LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1700260	21.8	1010

70	Lithium Bond Chemistry in Lithium Bulfur Batteries. Angewandte Chemie, 2017, 129, 8290-8294	3.6	50
69	Lithium Bond Chemistry in Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8178-8182	16.4	332
68	Understanding trends in electrochemical carbon dioxide reduction rates. <i>Nature Communications</i> , 2017 , 8, 15438	17.4	369
67	A Toolbox for LithiumBulfur Battery Research: Methods and Protocols. <i>Small Methods</i> , 2017 , 1, 1700134	12.8	160
66	Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial Heterogeneity Control. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8458-8466	16.4	163
65	Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithiumBulfur batteries. <i>Energy Storage Materials</i> , 2017 , 7, 56-63	19.4	131
64	An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 11069-11074	11.5	515
63	Rāktitelbild: Columnar Lithium Metal Anodes (Angew. Chem. 45/2017). <i>Angewandte Chemie</i> , 2017 , 129, 14508-14508	3.6	
62	Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries. <i>Science Bulletin</i> , 2017 , 62, 1267-1274	10.6	34
61	Columnar Lithium Metal Anodes. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14207-14211	16.4	146
60	Columnar Lithium Metal Anodes. <i>Angewandte Chemie</i> , 2017 , 129, 14395-14399	3.6	38
59	A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. <i>Chemical Society Reviews</i> , 2017 , 46, 5237-5288	58.5	461
58	A Supramolecular Capsule for Reversible Polysulfide Storage/Delivery in Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16223-16227	16.4	66
57	A Supramolecular Capsule for Reversible Polysulfide Storage/Delivery in Lithium-Sulfur Batteries. <i>Angewandte Chemie</i> , 2017 , 129, 16441-16445	3.6	18
56	Review of nanostructured current collectors in lithium Bulfur batteries. Nano Research, 2017, 10, 4027-40	0.54	74
55	Lithium-Sulfur Batteries: Review on High-Loading and High-Energy LithiumBulfur Batteries (Adv. Energy Mater. 24/2017). <i>Advanced Energy Materials</i> , 2017 , 7, 1770141	21.8	32
54	InnenrEktitelbild: A Supramolecular Capsule for Reversible Polysulfide Storage/Delivery in Lithium-Sulfur Batteries (Angew. Chem. 51/2017). <i>Angewandte Chemie</i> , 2017 , 129, 16635-16635	3.6	
53	Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries. <i>New Carbon Materials</i> , 2016 , 31, 352-362	4.4	71

A Cooperative Interface for Highly Efficient Lithium-Sulfur Batteries. Advanced Materials, 2016, 28, 9551 29558 431 52 3D Carbonaceous Current Collectors: The Origin of Enhanced Cycling Stability for 51 15.6 191 High-Sulfur-Loading Lithium Bulfur Batteries. Advanced Functional Materials, 2016, 26, 6351-6358 Lithium-Sulfur Batteries: A Cooperative Interface for Highly Efficient LithiumBulfur Batteries (Adv. 50 24 2 Mater. 43/2016). Advanced Materials, 2016, 28, 9550-9550 Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium ulphur batteries. Green 10 49 117 Chemistry, 2016, 18, 5169-5179 Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to 48 11 267 Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries. Small, 2016, 12, 381-9 Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite 498 47 24 Growth. Advanced Materials, 2016, 28, 2155-62 Lithium Anodes: Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit 46 24 1 Lithium Dendrite Growth (Adv. Mater. 11/2016). Advanced Materials, 2016, 28, 2090-2090 Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Materials, 2016, 45 19.4 215 3,77-84 Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. 11.5 1055 44 Nano Letters, 2016, 16, 519-27 Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides 11 43 515 for Lithium-Sulfur Batteries. Small, 2016, 12, 3283-91 Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient 42 24 699 Lithium Metal Batteries. Advanced Materials, 2016, 28, 2888-95 Frontispiz: Enhanced Electrochemical Kinetics on Conductive Polar Mediators for LithiumBulfur 3.6 41 Batteries. Angewandte Chemie, 2016, 128, Frontispiece: Enhanced Electrochemical Kinetics on Conductive Polar Mediators for LithiumBulfur 16.4 40 1 Batteries. Angewandte Chemie - International Edition, 2016, 55, Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium-Sulfur Batteries. 39 442 Angewandte Chemie - International Edition, 2016, 55, 12990-12995 Enhanced Electrochemical Kinetics on Conductive Polar Mediators for LithiumBulfur Batteries. 38 3.6 104 Angewandte Chemie, **2016**, 128, 13184-13189 Janus Separator of Polypropylene-Supported Cellular Graphene Framework for Sulfur Cathodes 13.6 251 37 with High Utilization in Lithium-Sulfur Batteries. Advanced Science, 2016, 3, 1500268 Nitrogen-doped herringbone carbon nanofibers with large lattice spacings and abundant edges: Catalytic growth and their applications in lithium ion batteries and oxygen reduction reactions. 36 5.3 39 Catalysis Today, 2015, 249, 244-251 The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium 83 35 (poly)sulfides in lithium-sulfur batteries. 2D Materials, 2015, 2, 014011

34	Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithiumBulfur batteries. <i>Carbon</i> , 2015 , 92, 96-105	10.4	68
33	Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithiumBulfur batteries. <i>Nano Energy</i> , 2015 , 11, 746-755	17.1	154
32	Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection. <i>ChemSusChem</i> , 2015 , 8, 2892-901	8.3	59
31	3D Mesoporous Graphene: CVD Self-Assembly on Porous Oxide Templates and Applications in High-Stable Li-S Batteries. <i>Small</i> , 2015 , 11, 5243-52	11	110
30	Sulfophile leitflige Substrate als Trigermaterialien fil Schwefelkathoden. <i>Angewandte Chemie</i> , 2015 , 127, 11170-11172	3.6	19
29	Designing host materials for sulfur cathodes: from physical confinement to surface chemistry. Angewandte Chemie - International Edition, 2015 , 54, 11018-20	16.4	196
28	Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2015 , 9, 6373-82	16.7	261
27	Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. <i>ACS Nano</i> , 2015 , 9, 3002-11	16.7	605
26	Cathode materials based on carbon nanotubes for high-energy-density lithium ulfur batteries. <i>Carbon</i> , 2014 , 75, 161-168	10.4	72
25	Nanoarchitectured Graphene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and Interconnected Micro/Mesopores for Lithium-Sulfur Batteries. <i>Advanced Functional Materials</i> , 2014 , 24, 2772-2781	15.6	452
24	Carbon: Nanoarchitectured Graphene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and Interconnected Micro/Mesopores for Lithium-Sulfur Batteries (Adv. Funct. Mater. 19/2014). Advanced Functional Materials, 2014, 24, 2920-2920	15.6	3
23	Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. <i>Advanced Materials</i> , 2014 , 26, 6100-5	24	492
22	Polysulfide shuttle control: Towards a lithium-sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading. <i>Journal of Power Sources</i> , 2014 , 253, 263-268	8.9	113
21	Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithiumBulfur batteries. <i>Nano Energy</i> , 2014 , 4, 65-72	17.1	328
20	Lithium-Sulfur Batteries: Hierarchical Vine-Tree-Like Carbon Nanotube Architectures: In-Situ CVD Self-Assembly and Their Use as Robust Scaffolds for Lithium-Sulfur Batteries (Adv. Mater. 41/2014). <i>Advanced Materials</i> , 2014 , 26, 6986-6986	24	3
19	Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10869-10875	13	78
18	Lithium-Sulfur Batteries: Dendrite-Free Nanostructured Anode: Entrapment of Lithium in a 3D Fibrous Matrix for Ultra-Stable LithiumBulfur Batteries (Small 21/2014). <i>Small</i> , 2014 , 10, 4222-4222	11	53
17	Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. <i>Small</i> , 2014 , 10, 4257-63	11	130

LIST OF PUBLICATIONS

16	Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2014 , 24, 6105-6112	15.6	432
15	Strongly Coupled Interfaces between a Heterogeneous Carbon Host and a Sulfur-Containing Guest for Highly Stable Lithium-Sulfur Batteries: Mechanistic Insight into Capacity Degradation. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1400227	4.6	311
14	Lithium-Sulfur Batteries: Nitrogen-Doped Aligned Carbon Nanotube/Graphene Sandwiches: Facile Catalytic Growth on Bifunctional Natural Catalysts and Their Applications as Scaffolds for High-Rate Lithium-Sulfur Batteries (Adv. Mater. 35/2014). <i>Advanced Materials</i> , 2014 , 26, 6199-6199	24	3
13	Hierarchical Carbon Nanotube/Carbon Black Scaffolds as Short- and Long-Range Electron Pathways with Superior Li-Ion Storage Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 200-206	8.3	42
12	Three-dimensional aluminum foam/carbon nanotube scaffolds as long- and short-range electron pathways with improved sulfur loading for high energy density lithium ulfur batteries. <i>Journal of Power Sources</i> , 2014 , 261, 264-270	8.9	79
11	Controllable bulk growth of few-layer graphene/single-walled carbon nanotube hybrids containing Fe@C nanoparticles in a fluidized bed reactor. <i>Carbon</i> , 2014 , 67, 554-563	10.4	15
10	Hierarchical vine-tree-like carbon nanotube architectures: In-situ CVD self-assembly and their use as robust scaffolds for lithium-sulfur batteries. <i>Advanced Materials</i> , 2014 , 26, 7051-8	24	97
9	Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium-sulfur batteries. <i>ACS Nano</i> , 2014 , 8, 11280-9	16.7	156
8	Electrodes: Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for LithiumBulfur Batteries (Adv. Funct. Mater. 39/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 6244-6244	15.6	8
7	Ionic shield for polysulfides towards highly-stable lithiumBulfur batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 347-353	35.4	547
6	Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. <i>Nature Communications</i> , 2014 , 5, 3410	17.4	551
5	Hierarchical nanostructured composite cathode with carbon nanotubes as conductive scaffold for lithium-sulfur batteries. <i>Journal of Energy Chemistry</i> , 2013 , 22, 341-346	12	38
4	N-Methyl-2-pyrrolidone-assisted solvothermal synthesis of nanosize orthorhombic lithium iron phosphate with improved Li-storage performance. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18908		18
3	Exploring Trends on Coupling Mechanisms toward C3 Product Formation in CO(2)R. <i>Journal of Physical Chemistry C</i> ,	3.8	4
2	Polysulfide Electrocatalysis on Framework Porphyrin in High-Capacity and High-Stable LithiumBulfur Batteries. <i>CCS Chemistry</i> ,128-137	7.2	96
1	Machine Learning-Assisted Screening of Stepped Alloy Surfaces for C1 Catalysis. <i>ACS Catalysis</i> ,4252-426	5 0 3.1	1