Sarah A Stanley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4398445/publications.pdf

Version: 2024-02-01

24 2,569 16 22 papers citations h-index g-index

36 36 36 36 3839

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	The B.1.427/1.429 (epsilon) SARS-CoV-2 variants are more virulent than ancestral B.1 (614G) in Syrian hamsters. PLoS Pathogens, 2022, 18, e1009914.	4.7	26
2	Mucosal Vaccination with Cyclic Dinucleotide Adjuvants Induces Effective T Cell Homing and IL-17–Dependent Protection against <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2022, 208, 407-419.	0.8	5
3	The aldehyde hypothesis: metabolic intermediates as antimicrobial effectors. Open Biology, 2022, 12, 220010.	3.6	6
4	Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro. Nature Communications, 2022, 13, 2766.	12.8	20
5	Workshop-based learning and networking: a scalable model for research capacity strengthening in low- and middle-income countries. Global Health Action, 2022, 15, .	1.9	O
6	The Innate Immune Response to <i>Mycobacterium tuberculosis</i> Infection. Annual Review of Immunology, 2021, 39, 611-637.	21.8	66
7	Screening a Library of FDA-Approved and Bioactive Compounds for Antiviral Activity against SARS-CoV-2. ACS Infectious Diseases, 2021, 7, 2337-2351.	3.8	23
8	SARS-CoV-2 nucleocapsid protein forms condensates with viral genomic RNA. PLoS Biology, 2021, 19, e3001425.	5.6	71
9	Practical considerations for Ultraviolet-C radiation mediated decontamination of N95 respirator against SARS-CoV-2 virus. PLoS ONE, 2021, 16, e0258336.	2.5	10
10	A nanocompartment system contributes to defense against oxidative stress in Mycobacterium tuberculosis. ELife, 2021, 10, .	6.0	15
11	HIF- $1\hat{l}\pm$ as a central mediator of cellular resistance to intracellular pathogens. Current Opinion in Immunology, 2019, 60, 111-116.	5.5	48
12	STING-Activating Adjuvants Elicit a Th17 Immune Response and Protect against Mycobacterium tuberculosis Infection. Cell Reports, 2018, 23, 1435-1447.	6.4	95
13	Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN- \hat{l}^3 /HIF- $1\hat{l}^4$ signaling and supports host defense. PLoS Pathogens, 2018, 14, e1006874.	4.7	187
14	The Tyrosine Kinase Inhibitor Gefitinib Restricts <i>Mycobacterium tuberculosis</i> Growth through Increased Lysosomal Biogenesis and Modulation of Cytokine Signaling. ACS Infectious Diseases, 2017, 3, 564-574.	3.8	42
15	Nitric Oxide Modulates Macrophage Responses to <i>Mycobacterium tuberculosis</i> Infection through Activation of HIF-1α and Repression of NF-ΰB. Journal of Immunology, 2017, 199, 1805-1816.	0.8	129
16	HIF-1α Is an Essential Mediator of IFN-γ–Dependent Immunity to <i>Mycobacterium tuberculosis</i> Journal of Immunology, 2016, 197, 1287-1297.	0.8	198
17	Identification of Host-Targeted Small Molecules That Restrict Intracellular Mycobacterium tuberculosis Growth. PLoS Pathogens, 2014, 10, e1003946.	4.7	234
18	Host–Pathogen Interactions During Mycobacterium tuberculosis infections. Current Topics in Microbiology and Immunology, 2013, 374, 211-241.	1.1	91

#	Article	IF	CITATIONS
19	Diarylcoumarins inhibit mycolic acid biosynthesis and kill <i>Mycobacterium tuberculosis</i> by targeting FadD32. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11565-11570.	7.1	89
20	Identification of Novel Inhibitors of <i>M. tuberculosis</i> Growth Using Whole Cell Based High-Throughput Screening. ACS Chemical Biology, 2012, 7, 1377-1384.	3.4	232
21	Toward a Systems-Level Analysis of Infection Biology: A New Method for Conducting Genetic Screens in Human Cells. Science Translational Medicine, 2009, 1, 11ps13.	12.4	0
22	Chemical Tools for Dissecting Bacterial Physiology and Virulence. Biochemistry, 2009, 48, 8776-8786.	2.5	11
23	The Type I IFN Response to Infection with (i> Mycobacterium tuberculosis Requires ESX-1-Mediated Secretion and Contributes to Pathogenesis. Journal of Immunology, 2007, 178, 3143-3152.	0.8	381
24	Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13001-13006.	7.1	497