Jeffrey A Towbin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4398147/publications.pdf

Version: 2024-02-01

9861 25034 20,650 147 57 141 citations h-index g-index papers 155 155 155 13934 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Contemporary Definitions and Classification of the Cardiomyopathies. Circulation, 2006, 113, 1807-1816.	1.6	2,935
2	Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature, 1998, 392, 293-296.	27.8	1,734
3	Genotype-Phenotype Correlation in the Long-QT Syndrome. Circulation, 2001, 103, 89-95.	1.6	1,641
4	HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies. Heart Rhythm, 2011, 8, 1308-1339.	0.7	995
5	Incidence, Causes, and Outcomes of Dilated Cardiomyopathy in Children. JAMA - Journal of the American Medical Association, 2006, 296, 1867.	7.4	829
6	Effectiveness and Limitations of \hat{l}^2 -Blocker Therapy in Congenital Long-QT Syndrome. Circulation, 2000, 101, 616-623.	1.6	783
7	The Incidence of Pediatric Cardiomyopathy in Two Regions of the United States. New England Journal of Medicine, 2003, 348, 1647-1655.	27.0	722
8	lonic Mechanisms Responsible for the Electrocardiographic Phenotype of the Brugada Syndrome Are Temperature Dependent. Circulation Research, 1999, 85, 803-809.	4.5	557
9	ECG T-Wave Patterns in Genetically Distinct Forms of the Hereditary Long QT Syndrome. Circulation, 1995, 92, 2929-2934.	1.6	501
10	2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm, 2019, 16, e301-e372.	0.7	494
11	Epidemiology and Cause-Specific Outcome of Hypertrophic Cardiomyopathy in Children. Circulation, 2007, 115, 773-781.	1.6	412
12	Left ventricular non-compaction cardiomyopathy. Lancet, The, 2015, 386, 813-825.	13.7	407
13	Shared Genetic Causes of Cardiac Hypertrophy in Children and Adults. New England Journal of Medicine, 2008, 358, 1899-1908.	27.0	352
14	Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nature Genetics, 2000, 26, 365-369.	21.4	319
15	Compound and Digenic Heterozygosity Contributes to Arrhythmogenic Right Ventricular Cardiomyopathy. Journal of the American College of Cardiology, 2010, 55, 587-597.	2.8	282
16	Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nature Genetics, 1994, 8, 141-147.	21.4	263
17	Risk of Aborted Cardiac Arrest or Sudden Cardiac Death During Adolescence in the Long-QT Syndrome. JAMA - Journal of the American Medical Association, 2006, 296, 1249.	7.4	258
18	Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. Journal of the American College of Cardiology, 2003, 42, 103-109.	2.8	257

#	Article	IF	CITATIONS
19	2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: Executive Summary. Journal of the American College of Cardiology, 2011, 58, 2703-2738.	2.8	252
20	Genotype-Phenotype Aspects of Type 2 Long QT Syndrome. Journal of the American College of Cardiology, 2009, 54, 2052-2062.	2.8	236
21	D-Transposition of the Great Arteries. Journal of the American College of Cardiology, 2014, 64, 498-511.	2.8	227
22	Clinical Features of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Associated With Mutations in Plakophilin-2. Circulation, 2006, 113, 1641-1649.	1.6	225
23	The International Society for Heart and Lung Transplantation Guidelines for the management of pediatric heart failure: Executive summary. Journal of Heart and Lung Transplantation, 2014, 33, 888-909.	0.6	220
24	Pediatric Cardiomyopathies. Circulation Research, 2017, 121, 855-873.	4.5	207
25	The "Final Common Pathway" Hypothesis and Inherited Cardiovascular Disease. Herz, 2000, 25, 168-175.	1.1	188
26	The Pediatric Cardiomyopathy Registry and Heart Failure: Key Results from the First 15 Years. Heart Failure Clinics, 2010, 6, 401-413.	2.1	175
27	Outcomes of Restrictive Cardiomyopathy in Childhood and the Influence of Phenotype. Circulation, 2012, 126, 1237-1244.	1.6	166
28	Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nature Reviews Cardiology, 2017, 14, 224-237.	13.7	166
29	Clinical Aspects of Type 3 Long-QT Syndrome. Circulation, 2016, 134, 872-882.	1.6	162
30	Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: an analysis of data from the Pediatric Cardiomyopathy Registry. Lancet, The, 2013, 382, 1889-1897.	13.7	159
31	Left Ventricular Noncompaction: A New Form of Heart Failure. Heart Failure Clinics, 2010, 6, 453-469.	2.1	154
32	Diagnosis and Evaluation of HypertrophicÂCardiomyopathy. Journal of the American College of Cardiology, 2022, 79, 372-389.	2.8	152
33	Outcomes in children with Noonan syndrome and hypertrophic cardiomyopathy: A study from the Pediatric Cardiomyopathy Registry. American Heart Journal, 2012, 164, 442-448.	2.7	149
34	Inherited Cardiomyopathies. Circulation Journal, 2014, 78, 2347-2356.	1.6	147
35	Cardiomyopathy Phenotypes and Outcomes for Children With Left Ventricular Myocardial Noncompaction: Results From the Pediatric Cardiomyopathy Registry. Journal of Cardiac Failure, 2015, 21, 877-884.	1.7	140
36	2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy: Executive summary. Heart Rhythm, 2019, 16, e373-e407.	0.7	135

#	Article	IF	Citations
37	Long-QT Syndrome After Age 40. Circulation, 2008, 117, 2192-2201.	1.6	134
38	Management of Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2022, 79, 390-414.	2.8	129
39	Recovery of Echocardiographic Function in Children With Idiopathic Dilated Cardiomyopathy. Journal of the American College of Cardiology, 2014, 63, 1405-1413.	2.8	126
40	Delineation of the Marfan phenotype associated with mutations in exons 23–32 of theFBN1 gene. , 1996, 62, 233-242.		120
41	Cardiomyopathies Due to Left Ventricular Noncompaction, Mitochondrial and Storage Diseases, and Inborn Errors of Metabolism. Circulation Research, 2017, 121, 838-854.	4.5	119
42	Myocardial Fibrosis Burden Predicts Left Ventricular Ejection Fraction and Is Associated With Age and Steroid Treatment Duration in Duchenne Muscular Dystrophy. Journal of the American Heart Association, 2015, 4, .	3.7	114
43	Viral Infection of the Myocardium in Endocardial Fibroelastosis. Circulation, 1997, 95, 133-139.	1.6	112
44	Factors Associated With Establishing a Causal Diagnosis for Children With Cardiomyopathy. Pediatrics, 2006, 118, 1519-1531.	2.1	109
45	Design and implementation of the North American Pediatric Cardiomyopathy Registry. American Heart Journal, 2000, 139, s86-s95.	2.7	108
46	Pediatric Cardiomyopathy: Importance of Genetic and Metabolic Evaluation. Journal of Cardiac Failure, 2012, 18, 396-403.	1.7	103
47	Arrhythmogenic Phenotype in Dilated Cardiomyopathy: Natural History and Predictors of Life‶hreatening Arrhythmias. Journal of the American Heart Association, 2015, 4, e002149.	3.7	102
48	Cardiomyopathy With Restrictive Physiology in Sickle CellÂDisease. JACC: Cardiovascular Imaging, 2016, 9, 243-252.	5.3	97
49	Familial Ventricular Arrhythmias in Boxers. Journal of Veterinary Internal Medicine, 1999, 13, 437-439.	1.6	89
50	Association between diffuse myocardial fibrosis and diastolic dysfunction in sickle cell anemia. Blood, 2017, 130, 205-213.	1.4	86
51	Detection of Microorganisms in the Tracheal Aspirates of Preterm Infants by Polymerase Chain Reaction: Association of Adenovirus Infection with Bronchopulmonary Dysplasia. Pediatric Research, 2000, 47, 225-225.	2.3	72
52	Clinical Implications for Affected Parents and Siblings of Probands With Long-QT Syndrome. Circulation, 2001, 104, 557-562.	1.6	71
53	Cardiac Metabolic Pathways Affected in the Mouse Model of Barth Syndrome. PLoS ONE, 2015, 10, e0128561.	2.5	69
54	Biallelic Mutations in MYPN, Encoding Myopalladin, Are Associated with Childhood-Onset, Slowly Progressive Nemaline Myopathy. American Journal of Human Genetics, 2017, 100, 169-178.	6.2	66

#	Article	IF	CITATIONS
55	Genetics, molecular mechanisms and management of long QT syndrome. Annals of Medicine, 1998, 30, 58-65.	3.8	65
56	Danon disease presenting with dilated cardiomyopathy and a complex phenotype. Journal of Human Genetics, 2007, 52, 830-835.	2.3	65
57	Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5182-91.	7.1	65
58	Pediatric and adult dilated cardiomyopathy represent distinct pathological entities. JCI Insight, 2017, 2,	5.0	63
59	Survival Without Cardiac Transplantation Among Children With DilatedÂCardiomyopathy. Journal of the American College of Cardiology, 2017, 70, 2663-2673.	2.8	59
60	GSK3- and PRMT-1–dependent modifications of desmoplakin control desmoplakin–cytoskeleton dynamics. Journal of Cell Biology, 2015, 208, 597-612.	5.2	58
61	Failure to Detect <i>connexin43</i> Mutations in 38 Cases of Sporadic and Familial Heterotaxy. Circulation, 1996, 94, 1909-1912.	1.6	56
62	The Burden of Early Phenotypes and the Influence of Wall Thickness in Hypertrophic Cardiomyopathy Mutation Carriers. JAMA Cardiology, 2017, 2, 419.	6.1	50
63	Dilated Cardiomyopathy: A Tale of Cytoskeletal Proteins and Beyond. Journal of Cardiovascular Electrophysiology, 2006, 17, 919-926.	1.7	48
64	Molecular determinants of left and right outflow tract obstruction. American Journal of Medical Genetics Part A, 2000, 97, 297-303.	2.4	45
65	Genomic scanning for expressed sequences in Xp21 identifies the glycerol kinase gene. Nature Genetics, 1993, 4, 367-372.	21.4	44
66	Molecular genetics of hypertrophic cardiomyopathy. Current Cardiology Reports, 2000, 2, 134-140.	2.9	44
67	Genetic abnormalities responsible for dilated cardiomyopathy. Current Cardiology Reports, 2000, 2, 475-480.	2.9	44
68	Genetic architecture of laterality defects revealed by whole exome sequencing. European Journal of Human Genetics, 2019, 27, 563-573.	2.8	44
69	Accelerated cardiac remodeling in desmoplakin transgenic mice in response to endurance exercise is associated with perturbed Wnt/ \hat{l}^2 -catenin signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H174-H187.	3.2	41
70	Disturbance in Z-Disk Mechanosensitive Proteins Induced by a Persistent Mutant Myopalladin Causes Familial Restrictive Cardiomyopathy. Journal of the American College of Cardiology, 2014, 64, 2765-2776.	2.8	39
71	Familial Ventricular Arrhythmias in Boxers. Journal of Veterinary Internal Medicine, 1999, 13, 437.	1.6	39
72	San Luis Valley Recombinant chromosome 8 and tetralogy of Fallot: A review of chromosome 8 anomalies and congenital heart disease. American Journal of Medical Genetics Part A, 1991, 40, 471-476.	2.4	38

#	Article	IF	Citations
73	Whole exome sequencing in 342 congenital cardiac left sided lesion cases reveals extensive genetic heterogeneity and complex inheritance patterns. Genome Medicine, 2017, 9, 95.	8.2	37
74	Left Atrial structure and function in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 107.	3.3	37
75	Myopathic Cardiac Genotypes Increase Risk for Myocarditis. JACC Basic To Translational Science, 2021, 6, 584-592.	4.1	36
76	Molecular aspects of myocarditis. Current Infectious Disease Reports, 2000, 2, 308-314.	3.0	31
77	A genome-wide association study of congenital cardiovascular left-sided lesions shows association with a locus on chromosome 20. Human Molecular Genetics, 2016, 25, 2331-2341.	2.9	31
78	Hypertrophic Cardiomyopathy. PACE - Pacing and Clinical Electrophysiology, 2009, 32, S23-31.	1.2	30
79	Differences in Presentation and Outcomes Between Children With Familial Dilated Cardiomyopathy and Children With Idiopathic Dilated Cardiomyopathy. Circulation: Heart Failure, 2017, 10, .	3.9	30
80	Identification of a new SCN5A mutation, D1840G, associated with the long QT syndrome. Human Mutation, 1998, 12, 72-72.	2.5	29
81	Genetic Causes of Cardiomyopathy in Children: First Results From the Pediatric Cardiomyopathy Genes Study. Journal of the American Heart Association, 2021, 10, e017731.	3.7	29
82	Characterization of patients with glycerol kinase deficiency utilizing cDNA probes for the Duchenne muscular dystrophy locus. Human Genetics, 1989, 83, 122-126.	3.8	28
83	Dystrophin Genotype–Cardiac Phenotype Correlations in Duchenne and Becker Muscular Dystrophies Using Cardiac Magnetic Resonance Imaging. American Journal of Cardiology, 2015, 115, 967-971.	1.6	27
84	Intrauterine adenoviral infection associated with fetal non-immune hydrops. Prenatal Diagnosis, 1998, 18, 182-185.	2.3	26
85	Ion Channel Dysfunction Associated With Arrhythmia, Ventricular Noncompaction, and Mitral Valve Prolapse. Journal of the American College of Cardiology, 2014, 64, 768-771.	2.8	25
86	Biomarkers of cardiovascular stress and fibrosis in preclinical hypertrophic cardiomyopathy. Open Heart, 2017, 4, e000615.	2.3	22
87	The genetic architecture of pediatric cardiomyopathy. American Journal of Human Genetics, 2022, 109, 282-298.	6.2	21
88	Revised fine mapping of the human voltage-dependent anion channel loci by radiation hybrid analysis. Mammalian Genome, 1999, 10, 1041-1042.	2.2	20
89	Initial Observations of the Effects of Calcium Chloride Infusions in Pediatric Patients with Low Cardiac Output. Pediatric Cardiology, 2016, 37, 610-617.	1.3	20
90	Cardiac transplantation in children with Down syndrome, Turner syndrome, and other chromosomal anomalies: A multi-institutional outcomes analysis. Journal of Heart and Lung Transplantation, 2018, 37, 749-754.	0.6	19

#	Article	IF	Citations
91	Molecular diagnosis of myocardial disease. Expert Review of Molecular Diagnostics, 2002, 2, 587-602.	3.1	18
92	Medical Therapy Leads to Favorable Remodeling in Left Ventricular Non-compaction Cardiomyopathy: Dilated Phenotype. Pediatric Cardiology, 2016, 37, 674-677.	1.3	17
93	Assessment of large copy number variants in patients with apparently isolated congenital leftâ€sided cardiac lesions reveals clinically relevant genomic events. American Journal of Medical Genetics, Part A, 2017, 173, 2176-2188.	1.2	17
94	Effect of patent ductus arteriosus on the heart in preterm infants. Congenital Heart Disease, 2019, 14, 33-36.	0.2	16
95	Prevalence, predictors, and outcomes of cardiorenal syndrome in children with dilated cardiomyopathy: a report from the Pediatric Cardiomyopathy Registry. Pediatric Nephrology, 2015, 30, 2177-2188.	1.7	15
96	Utility of Echocardiography in the Assessment of Left Ventricular Diastolic Function and Restrictive Physiology in Children and Young Adults with Restrictive Cardiomyopathy: A Comparative Echocardiography-Catheterization Study. Pediatric Cardiology, 2017, 38, 381-389.	1.3	14
97	No Obesity Paradox in Pediatric Patients With Dilated Cardiomyopathy. JACC: Heart Failure, 2018, 6, 222-230.	4.1	14
98	The Impact of Concomitant Left Ventricular Non-compaction with Congenital Heart Disease on Perioperative Outcomes. Pediatric Cardiology, 2016, 37, 1307-1312.	1.3	13
99	The Genetic Dissection of Ace2 Expression Variation in the Heart of Murine Genetic Reference Population. Frontiers in Cardiovascular Medicine, 2020, 7, 582949.	2.4	13
100	Familial Left Ventricular Non-Compaction Is Associated With a Rare p.V407I Variant in Bone Morphogenetic Protein 10. Circulation Journal, 2019, 83, 1737-1746.	1.6	12
101	Identifying modifier genes for hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2020, 144, 119-126.	1.9	12
102	Restrictive cardiomyopathy: from genetics and clinical overview to animal modeling. Reviews in Cardiovascular Medicine, 2022, 23, 0108.	1.4	12
103	Transcatheter closure of residual atrial septal defect following cardiac transplantation. Catheterization and Cardiovascular Diagnosis, 1993, 28, 162-163.	0.3	11
104	The Genetics of Cardiac Arrhythmias. PACE - Pacing and Clinical Electrophysiology, 2000, 23, 106-119.	1.2	11
105	Ventricular Tachycardia or Conduction Disease: What is the Mechanism of Death Associated with SCN5A?. Journal of Cardiovascular Electrophysiology, 2001, 12, 637-638.	1.7	11
106	Cardiac remodeling after anthracycline and radiotherapy exposure in adult survivors of childhood cancer: A report from the St Jude Lifetime Cohort Study. Cancer, 2021, 127, 4646-4655.	4.1	10
107	Systems genetics analysis defines importance of TMEM43/ <i>LUMA</i> for cardiac- and metabolic-related pathways. Physiological Genomics, 2022, 54, 22-35.	2.3	10
108	FasL expression in cardiomyocytes activates the ERK1/2 pathway, leading to dilated cardiomyopathy and advanced heart failure. Clinical Science, 2016, 130, 289-299.	4.3	9

#	Article	IF	CITATIONS
109	Early Lethality Due to a Novel Desmoplakin Variant Causing Infantile Epidermolysis Bullosa Simplex With Fragile Skin, Aplasia Cutis Congenita, and Arrhythmogenic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2020, 13, e002800.	3.6	9
110	Cardiovascular Family History Increases Risk for Late-Onset Adverse Cardiovascular Outcomes in Childhood Cancer Survivors: A St. Jude Lifetime Cohort Report. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 123-132.	2.5	8
111	Fibrillin-1 Gene Mutations in Left Ventricular Non-compaction Cardiomyopathy. Pediatric Cardiology, 2016, 37, 1123-1126.	1.3	7
112	Strategies to Prevent Cast Formation in Patients with Plastic Bronchitis Undergoing Heart Transplantation. Pediatric Cardiology, 2017, 38, 1077-1079.	1.3	7
113	Cardiac biomarkers in pediatric cardiomyopathy: Study design and recruitment results from the Pediatric Cardiomyopathy Registry. Progress in Pediatric Cardiology, 2019, 53, 1-10.	0.4	7
114	The landscape of cardiovascular care in pediatric cancer patients and survivors: a survey by the ACC Pediatric Cardio-Oncology Work Group. Cardio-Oncology, 2019, 5, 16.	1.7	7
115	Young athletes: Preventing sudden death by adopting a modern screening approach? A critical review and the opening of a debate. IJC Heart and Vasculature, 2021, 34, 100790.	1.1	7
116	Anomalous course of the brachiocephalic vein diagnosed by two-dimensional echocardiography in a child with left atrial isomerism and right aortic arch. Journal of Clinical Ultrasound, 1987, 15, 544-549.	0.8	5
117	Management of Congenital Long-QT Syndrome: Commentary From the Experts. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009726.	4.8	5
118	Ace2 and Tmprss2 Expressions Are Regulated by Dhx32 and Influence the Gastrointestinal Symptoms Caused by SARS-CoV-2. Journal of Personalized Medicine, 2021, 11, 1212.	2.5	5
119	Left ventricular noncompaction cardiomyopathy in Duchenne muscular dystrophy carriers. Journal of Cardiology Cases, 2015, 11, 7-9.	0.5	4
120	Concurrent Use of Calcium Chloride and Arginine Vasopressin Infusions in Pediatric Patients with Acute Cardiocirculatory Failure. Pediatric Cardiology, 2019, 40, 1046-1056.	1.3	4
121	Left Ventricular Noncompaction and Vigorous Physical Activity. Journal of the American College of Cardiology, 2020, 76, 1734-1736.	2.8	4
122	Pediatric Primary Dilated Cardiomyopathy Gene Testing and Variant Reclassification: Does It Matter?. Journal of the American Heart Association, 2020, 9, e016910.	3.7	4
123	Novel use of cangrelor in pediatrics: A pilot cohort study demonstrating use in ventricular assist devices. Artificial Organs, 2021, 45, 38-45.	1.9	4
124	Acquired and modifiable cardiovascular risk factors in patients treated for cancer. Journal of Thrombosis and Thrombolysis, 2021, 51, 846-853.	2.1	4
125	Feasibility and Safety of Percutaneous Cardiac Interventions for Congenital and Acquired Heart Defects in Infants â‰\$000 g. Children, 2021, 8, 826.	1.5	4
126	Emerging targets in the long QT syndromes and Brugada syndrome. Expert Opinion on Therapeutic Targets, 1999, 3, 423-437.	1.0	3

#	Article	IF	Citations
127	The Significant Arrhythmia and Cardiomyopathy Burden of Lamin A/C Mutations. Journal of the American College of Cardiology, 2016, 68, 2308-2310.	2.8	3
128	Prevalence of left ventricular hypertrabeculation/noncompaction among children with sickle cell disease. Congenital Heart Disease, 2018, 13, 440-443.	0.2	3
129	Genetic arrhythmias complicating patients with dilated cardiomyopathy: How it happens. Heart Rhythm, 2020, 17, 313-314.	0.7	3
130	Deficiency in nebulin repeats of sarcomeric nebulette is detrimental for cardiomyocyte tolerance to exercise and biomechanical stress. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H2130-H2146.	3.2	3
131	Progressive Reduction in Right Ventricular Contractile Function Attributable to Altered Actin Expression in an Aging Mouse Model of Arrhythmogenic Cardiomyopathy. Circulation, 2022, 145, 1609-1624.	1.6	3
132	Mutation Screening for the Genes Causing Cardiac Arrhythmias. , 2006, 126, 57-80.		2
133	Pediatric and adult dilated cardiomyopathy are distinguished by distinct biomarker profiles. Pediatric Research, 2022, 92, 206-215.	2.3	2
134	Identification of a new SCN5A mutation, D1840G, associated with the long QT syndrome. Human Mutation, 1998, 12, 72-72.	2.5	2
135	Abstract 2556: A Comparative Analysis of Outcomes for Pediatric Patients with Biopsy-Proven Myocarditis, Clinically-Diagnosed Myocarditis and Idiopathic Dilated Cardiomyopathy Circulation, 2007, 116, .	1.6	2
136	Combining whole exome sequencing with in silico analysis and clinical data to identify candidate variants in pediatric left ventricular noncompaction. International Journal of Cardiology, 2021, 347, 29-37.	1.7	2
137	Pediatric Cardio-Oncology Medicine: A New Approach in Cardiovascular Care. Children, 2021, 8, 1200.	1.5	2
138	LGC-22. SJ901: Phase I/II evaluation of single agent mirdametinib (PD-0325901), a brain-penetrant MEK1/2 inhibitor, for the treatment of children, adolescents, and young adults with low-grade glioma (LGG). Neuro-Oncology, 2022, 24, i92-i92.	1.2	2
139	Genetics and Genomics of Dilated Cardiomyopathy. , 0, , 118-135.		1
140	Response by Towbin and Jefferies to Letter Regarding Article, "Cardiomyopathies Due to Left Ventricular Noncompaction, Mitochondrial and Storage Diseases, and Inborn Errors of Metabolism― Circulation Research, 2017, 121, e90.	4.5	1
141	Diffuse Myocardial Fibrosis Is a Common Feature of Sickle Cell Anemia That Is Associated with Diastolic Dysfunction and Restrictive Cardiac Physiology. Blood, 2016, 128, 8-8.	1.4	1
142	Prevalence of Left Ventricular Noncompaction in Newborns by Echocardiography: Is This the Most Accurate Approach?. Circulation: Cardiovascular Imaging, 2022, 15 , .	2.6	1
143	Abstract 2608: Alterations In Biomechnical Properties of Ascending Aorta in Marfan Syndrome by Real-time 2-D Ultrasound Speckle Tracking Imaging. Circulation, 2008, 118, .	1.6	0
144	Abstract 2409: Parvovirus B19 and Cardiomyopathy - The New Coxsackievirus. Circulation, 2008, 118, .	1.6	O

#	Article	IF	CITATIONS
145	Abstract 4956: A Risk Stratification Analysis of Predictors of Death or Transplant in Children with Hypertrophic Cardiomyopathy. Circulation, 2008, $118,\ldots$	1.6	0
146	Systems Genetics Analysis of Arrhythmogenic Cardiomyopathy Induced by p.S368L Mutation in Transmembrane Protein 43. FASEB Journal, 2018, 32, 532.11.	0.5	0
147	Cardiac phenotyping in the BXD strains as a genetic reference population for cardiovascular diseases. FASEB Journal, 2019, 33, 532.2.	0.5	O