
José Pedro Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4397805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Versatile electronic nose for the detection of chronic disease biomarkers through the breath. , 2022, ,		0
2	Rapid and Non-Destructive Analysis of Corky Off-Flavors in Natural Cork Stoppers by a Wireless and Portable Electronic Nose. Sensors, 2022, 22, 4687.	3.8	1
3	Graphene-Doped Tin Oxide Nanofibers and Nanoribbons as Gas Sensors to Detect Biomarkers of Different Diseases through the Breath. Sensors, 2020, 20, 7223.	3.8	13
4	Air quality monitoring using nanosensors. , 2020, , 9-31.		3
5	Development of Tin Oxide-Based Nanosensors for Electronic Nose Environmental Applications. Biosensors, 2019, 9, 21.	4.7	27
6	Use of Electronic Noses for Diagnosis of Digestive and Respiratory Diseases through the Breath. Biosensors, 2019, 9, 35.	4.7	62
7	Chemiresistive sensors based on electrospun tin oxide nanofibers for detecting NO ₂ at the sub-0.1 ppm level. , 2019, , .		4
8	Discrimination of Aromas in Beer with Electronic Nose. , 2018, , .		2
9	Tin Dioxide-Graphene Based Chemi-Device for NO2 Detection in the Sub ppm Range. Proceedings (mdpi), 2017, 1, .	0.2	5
10	Sensors and Systems for Environmental Monitoring and Control. Journal of Sensors, 2017, 2017, 1-2.	1.1	5
11	Electronic Noses Applications in Beer Technology. , 2017, , .		9
12	A Web-Based Approach for Classifying Environmental Pollutants Using Portable E-nose Devices. IEEE Intelligent Systems, 2016, 31, 108-112.	4.0	92
13	Wine Applications With Electronic Noses. , 2016, , 137-148.		12
14	On-line classification of pollutants in water using wireless portable electronic noses. Chemosphere, 2016, 152, 107-116.	8.2	38
15	A Wireless and Portable Electronic Nose to Differentiate Musts of Different Ripeness Degree and Grape Varieties. Sensors, 2015, 15, 8429-8443.	3.8	33
16	Automatic Sensor System for the Continuous Analysis of the Evolution of Wine. American Journal of Enology and Viticulture, 2015, 66, 148-155.	1.7	18
17	Real time detection of beer defects with a hand held electronic nose. , 2015, , .		9
18	Propagation of acoustic waves in metal oxide nanoparticle layers with catalytic metals for selective gas detection. Sensors and Actuators B: Chemical, 2015, 217, 65-71.	7.8	12

JOSé PEDRO SANTOS

#	Article	IF	CITATIONS
19	A REstfull Approach for Classifying Pollutants in Water Using Neural Networks. Advances in Intelligent Systems and Computing, 2015, , 371-380.	0.6	0
20	Nanocrystalline Tin Oxide Nanofibers Deposited by a Novel Focused Electrospinning Method. Application to the Detection of TATP Precursors. Sensors, 2014, 14, 24231-24243.	3.8	23
21	Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents. Sensors, 2014, 14, 12658-12669.	3.8	25
22	Characterization of an array of Love-wave gas sensors developed using electrospinning technique to deposit nanofibers as sensitive layers. Talanta, 2014, 120, 408-412.	5.5	22
23	Detection of bacteriophages in dynamic mode using a Love-wave immunosensor with microfluidics technology. Sensors and Actuators B: Chemical, 2013, 185, 218-224.	7.8	28
24	Comparison of two types of acoustic biosensors to detect immunoreactions: Love-wave sensor working in dynamic mode and QCM working in static mode. Sensors and Actuators B: Chemical, 2013, 189, 123-129.	7.8	18
25	Comparative Evaluation between Two Acoustic Immunosensors: Love-wave and QCM, and Systems of Measurement: Dynamic and Static. Procedia Engineering, 2012, 47, 174-177.	1.2	0
26	Love-wave sensor array to detect, discriminate and classify chemical warfare agent simulants. Sensors and Actuators B: Chemical, 2012, 175, 173-178.	7.8	49
27	Discrimination and classification of chemical warfare agent simulants using a Love-wave sensor array. Procedia Engineering, 2011, 25, 23-26.	1.2	2
28	Single-walled carbon nanotube microsensors for nerve agent simulant detection. Sensors and Actuators B: Chemical, 2011, 157, 253-259.	7.8	27
29	Detection of Acetic Acid in wine by means of an electronic nose. , 2011, , .		5
30	Threshold detection of aromatic compounds in wine with an electronic nose and a human sensory panel. Talanta, 2010, 80, 1899-1906.	5.5	47
31	Threshold detection of aromatic compounds in wine with an electronic nose and a human sensory panel. , 2009, , .		0
32	Evaluation of Wine Aromatic Compounds by a Sensory Human Panel and an Electronic Nose. Journal of Agricultural and Food Chemistry, 2009, 57, 11543-11549.	5.2	42
33	Electronic nose for wine ageing detection. Sensors and Actuators B: Chemical, 2008, 133, 180-186.	7.8	81
34	Enrichment sampling methods for wine discrimination with gas sensors. Journal of Food Composition and Analysis, 2008, 21, 716-723.	3.9	37
35	Comparative study of sampling systems combined with gas sensors for wine discrimination. Sensors and Actuators B: Chemical, 2007, 126, 616-623.	7.8	39
36	Correlating e-nose responses to wine sensorial descriptors and gas chromatography–mass spectrometry profiles using partial least squares regression analysis. Sensors and Actuators B: Chemical, 2007, 127, 267-276.	7.8	55

JOSé PEDRO SANTOS

#	Article	IF	CITATIONS
37	Differentiation of red wines using an electronic nose based on surface acoustic wave devices. Talanta, 2006, 68, 1162-1165.	5.5	39
38	Wine classification with a zinc oxide SAW sensor array. Sensors and Actuators B: Chemical, 2006, 120, 166-171.	7.8	44
39	Identification of typical wine aromas by means of an electronic nose. IEEE Sensors Journal, 2006, 6, 173-178.	4.7	68
40	The effect of the oxygen concentration and the rf power on the zinc oxide films properties deposited by magnetron sputtering. Applied Surface Science, 2005, 245, 273-280.	6.1	42
41	SAW sensor array for wine discrimination. Sensors and Actuators B: Chemical, 2005, 107, 291-295.	7.8	44
42	Structural studies of zinc oxide films grown by RF magnetron sputtering. Synthetic Metals, 2005, 148, 37-41.	3.9	21
43	Classification of white wine aromas with an electronic nose. Talanta, 2005, 67, 610-616.	5.5	77
44	A comparative study of sensor array and GC–MS: application to Madrid wines characterization. Sensors and Actuators B: Chemical, 2004, 102, 299-307.	7.8	54
45	Detection of volatile organic compounds using surface acoustic wave sensors with different polymer coatings. Thin Solid Films, 2004, 467, 234-238.	1.8	51
46	Discrimination of different aromatic compounds in water, ethanol and wine with a thin film sensor array. Sensors and Actuators B: Chemical, 2004, 103, 98-103.	7.8	25
47	Analysis of neural networks and analysis of feature selection with genetic algorithm to discriminate among pollutant gas. Sensors and Actuators B: Chemical, 2004, 103, 122-128.	7.8	46
48	Fine-tuning of the resonant frequency using a hybrid coupler and fixed components in SAW oscillators for gas detection. Sensors and Actuators B: Chemical, 2004, 103, 139-144.	7.8	15
49	Electronic nose for the identification of pig feeding and ripening time in Iberian hams. Meat Science, 2004, 66, 727-732.	5.5	31
50	Artificial olfactory system for the classification of Iberian hams. Sensors and Actuators B: Chemical, 2003, 96, 621-629.	7.8	16
51	Detection of toxic gases by a tin oxide multisensor. IEEE Sensors Journal, 2002, 2, 387-393.	4.7	23
52	Microstructural characterization of nanograin tin oxide gas sensors. Scripta Materialia, 1997, 9, 43-52.	0.5	45
53	Influence of the deposition conditions of SnO2 thin films by reactive sputtering on the sensitivity to urban pollutants. Sensors and Actuators B: Chemical, 1997, 45, 193-198.	7.8	39
54	Ultrafine grain-size tin-oxide films for carbon monoxide monitoring in urban environments. Sensors and Actuators B: Chemical, 1995, 25, 559-563.	7.8	58