
Francisco Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4397307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Association of Rpb4 with RNA Polymerase II Depends on CTD Ser5P Phosphatase Rtr1 and Influences mRNA Decay in Saccharomyces cerevisiae. International Journal of Molecular Sciences, 2022, 23, 2002.	4.1	5
2	A High-Copy Suppressor Screen Reveals a Broad Role of Prefoldin-like Bud27 in the TOR Signaling Pathway in Saccharomyces cerevisiae. Genes, 2022, 13, 748.	2.4	3
3	Rpb4 and Puf3 imprint and post-transcriptionally control the stability of a common set of mRNAs in yeast. RNA Biology, 2021, 18, 1206-1220.	3.1	10
4	Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configuration. RNA Biology, 2021, 18, 1310-1323.	3.1	12
5	Biogenesis of RNA Polymerases in Yeast. Frontiers in Molecular Biosciences, 2021, 8, 669300.	3.5	10
6	Regulation of Eukaryotic RNAPs Activities by Phosphorylation. Frontiers in Molecular Biosciences, 2021, 8, 681865.	3.5	8
7	Several Isoforms for Each Subunit Shared by RNA Polymerases are Differentially Expressed in the Cultivated Olive Tree (Olea europaea L.). Frontiers in Molecular Biosciences, 2021, 8, 679292.	3.5	3
8	Transposon activation is a major driver in the genome evolution of cultivated olive trees (<i>Olea) Tj ETQq0 0 0 r</i>	gBT /Overl	ock 10 Tf 50
9	Prefoldin-like Bud27 influences the transcription of ribosomal components and ribosome biogenesis in <i>Saccharomyces cerevisiae</i> . Rna, 2020, 26, 1360-1379.	3.5	15

10	A Yeast Chromatin-enriched Fractions Purification Approach, yChEFs, from Saccharomyces cerevisiae. Bio-protocol, 2020, 10, e3471.	0.4	4
11	A novel yeast chromatin-enriched fractions purification approach, yChEFs, for the chromatin-associated protein analysis used for chromatin-associated and RNA-dependent chromatin-associated proteome studies from Saccharomyces cerevisiae. Gene Reports, 2019, 16, 100450.	0.8	12
12	The mRNA degradation factor Xrn1 regulates transcription elongation in parallel to Ccr4. Nucleic Acids Research, 2019, 47, 9524-9541.	14.5	26
13	Rpb5 modulates the RNA polymerase II transition from initiation to elongation by influencing Spt5 association and backtracking. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 1-13.	1.9	6
14	The Yeast Prefoldin Bud27. Advances in Experimental Medicine and Biology, 2018, 1106, 109-118.	1.6	11
15	Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI. AIMS Genetics, 2018, 05, 063-074.	1.9	6
16	Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI. AIMS Genetics, 2018, 5, 63-74.	1.9	4
17	Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 731-743.	1.9	23
18	Expression patterns and immunohistochemical localization of PITX2B transcription factor in the	0.6	8

Expression patterns and immunohistochemical localization of PHX2B transcription factor in t developing mouse heart. International Journal of Developmental Biology, 2015, 59, 247-254. 18

Francisco Navarro

#	Article	IF	CITATIONS
19	Rpb4/7 facilitates RNA polymerase II CTD dephosphorylation. Nucleic Acids Research, 2014, 42, 13674-13688.	14.5	33
20	The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription. Nucleic Acids Research, 2014, 42, 9666-9676.	14.5	29
21	Genetic changes involved in the juvenile-to-adult transition in the shoot apex of Olea europaea L. occur years before the first flowering. Tree Genetics and Genomes, 2014, 10, 585.	1.6	20
22	Correct Assembly of RNA Polymerase II Depends on the Foot Domain and Is Required for Multiple Steps of Transcription in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2013, 33, 3611-3626.	2.3	29
23	The Prefoldin Bud27 Mediates the Assembly of the Eukaryotic RNA Polymerases in an Rpb5-Dependent Manner. PLoS Genetics, 2013, 9, e1003297.	3.5	69
24	RNA polymerase II conserved protein domains as platforms for protein-protein interactions. Transcription, 2011, 2, 193-197.	3.1	8
25	Pitx2c Modulates Cardiac-Specific Transcription Factors Networks in Differentiating Cardiomyocytes from Murine Embryonic Stem Cells. Cells Tissues Organs, 2011, 194, 349-362.	2.3	31
26	The Conserved Foot Domain of RNA Pol II Associates with Proteins Involved in Transcriptional Initiation and/or Early Elongation. Genetics, 2011, 189, 1235-1248.	2.9	17
27	Overexpression of SNG1 causes 6-azauracil resistance in Saccharomyces cerevisiae. Current Genetics, 2010, 56, 251-263.	1.7	32
28	Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genetics and Genomes, 2010, 6, 891-903.	1.6	24
29	A role for p38α mitogenâ€activated protein kinase in embryonic cardiac differentiation. FEBS Letters, 2008, 582, 1025-1031.	2.8	16
30	Expression in bacteria of small and specific protein domains of two transcription factor isoforms, purification and monospecific polyclonal antibodies generation, by a two-step affinity chromatography procedure. Protein Expression and Purification, 2008, 60, 151-156.	1.3	4
31	Tissue distribution and subcellular localization of the cardiac sodium channel during mouse heart development. Cardiovascular Research, 2008, 78, 45-52.	3.8	36
32	Functional organization of the Rpb5 subunit shared by the three yeast RNA polymerases. Nucleic Acids Research, 2007, 35, 634-647.	14.5	31
33	Pitx2c overexpression promotes cell proliferation and arrests differentiation in myoblasts. Developmental Dynamics, 2006, 235, 2930-2939.	1.8	53
34	Rsc4 Connects the Chromatin Remodeler RSC to RNA Polymerases. Molecular and Cellular Biology, 2006, 26, 4920-4933.	2.3	98
35	Temporal and spatial expression pattern of ?1 sodium channel subunit during heart development. Cardiovascular Research, 2005, 65, 842-850.	3.8	24
36	Partners of Rpb8p, a Small Subunit Shared by Yeast RNA Polymerases I, II, and III. Molecular and Cellular Biology, 2001, 21, 6056-6065.	2.3	36

3

Francisco Navarro

#	Article	IF	CITATIONS
37	Cross Talk between tRNA and rRNA Synthesis in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2001, 21, 189-195.	2.3	36
38	Electron transport controls transcription of the thioredoxin gene (trxA) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Molecular Biology, 2000, 43, 23-32.	3.9	35
39	In vivo misreading by tRNA overdose. Rna, 2000, 6, 103-110.	3.5	14
40	Ferredoxin-Dependent Iron–Sulfur Flavoprotein Glutamate Synthase (GlsF) from the Cyanobacterium Synechocystis sp. PCC 6803: Expression and Assembly in Escherichia coli. Archives of Biochemistry and Biophysics, 2000, 379, 267-276.	3.0	31
41	The CS-GOGAT pathway is not operative in the heterocysts. Cloning and expression ofglsFgene from the cyanobacteriumAnabaenasp. PCC 7120. FEBS Letters, 2000, 476, 282-286.	2.8	82
42	Analysis of the effect of ppGpp on theftsQAZoperon inEscherichia coli. Molecular Microbiology, 1998, 29, 815-823.	2.5	33
43	Ammonium assimilation in cyanobacteria. The Regulation of the GS-GOGAT Pathway. , 1998, , 3607-3612.		2
44	Glutamate 94 of [2Feî—,2S]-ferredoxins is important for efficient electron transfer in the 1:1 complex formed with ferredoxin-glutamate synthase (GltS) from Synechocystis sp. PCC 6803. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1277, 135-140.	1.0	27
45	The Cyanobacterial Thioredoxin Gene Is Required for Both Photoautotrophic and Heterotrophic Growth. Plant Physiology, 1996, 111, 1067-1075.	4.8	37
46	Existence of two ferredoxin-glutamate synthases in the cyanobacterium Synechocystis sp. PCC 6803. Isolation and insertional inactivation of gltB and gltS genes. Plant Molecular Biology, 1995, 27, 753-767.	3.9	40
47	The Thioredoxin Gene, trxA from the Unicellular Cyanobacterium Synechocystis sp. PCC 6803 is Regulated by Light. , 1995, , 2413-2416.		Ο
48	Cloning and correct expression inE. coliof thepetJ gene encoding cytochromec6fromSynechocystis6803. FEBS Letters, 1994, 347, 173-177.	2.8	41
49	Synechocystis6803 plastocyanin isolated from both the cyanobacterium andE. colitransformed cells are identical. FEBS Letters, 1993, 319, 257-260.	2.8	37
50	Effects of diazepam and D-amphetamine on rhythmic pattern of eye movements in goldfish. NeuroReport, 1992, 3, 131-134.	1.2	15