
Idoia Ruiz de Larramendi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4396965/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial properties of nanoparticles. Trends in Biotechnology, 2012, 30, 499-511.	9.3	2,113
2	The Challenge To Relate the Physicochemical Properties of Colloidal Nanoparticles to Their Cytotoxicity. Accounts of Chemical Research, 2013, 46, 743-749.	15.6	330
3	In vivo integrity of polymer-coated gold nanoparticles. Nature Nanotechnology, 2015, 10, 619-623.	31.5	314
4	Naâ€lon Batteries—Approaching Old and New Challenges. Advanced Energy Materials, 2020, 10, 2002055.	19.5	229
5	Recovery by hydrometallurgical extraction of the platinum-group metals from car catalytic converters. Minerals Engineering, 2011, 24, 505-513.	4.3	152
6	Sodium–Oxygen Battery: Steps Toward Reality. Journal of Physical Chemistry Letters, 2016, 7, 1161-1166.	4.6	86
7	New Insights into the Instability of Discharge Products in Na–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 20120-20127.	8.0	63
8	Optical Sensing of Small Ions with Colloidal Nanoparticles. Chemistry of Materials, 2012, 24, 738-745.	6.7	60
9	Redox mediators: a shuttle to efficacy in metal–O ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 8746-8764.	10.3	54
10	In situ monitoring of discharge/charge processes in Li–O2 batteries by electrochemical impedance spectroscopy. Journal of Power Sources, 2014, 249, 110-117.	7.8	47
11	The Formation of Performance Enhancing Pseudoâ€Composites in the Highly Active La _{1–<i>x</i>} Ca _{<i>x</i>} Fe _{0.8} Ni _{0.2} O ₃ System for ITâ€SOFC Application. Advanced Functional Materials, 2013, 23, 5131-5139.	14.9	40
12	Operando UV-visible spectroscopy evidence of the reactions of iodide as redox mediator in Li–O2 batteries. Electrochemistry Communications, 2015, 59, 24-27.	4.7	32
13	Architecture of Na-O2 battery deposits revealed by transmission X-ray microscopy. Nano Energy, 2017, 37, 224-231.	16.0	32
14	Improving Na–O ₂ batteries with redox mediators. Chemical Communications, 2017, 53, 12008-12011.	4.1	31
15	Carbonâ€Free Cathodes: A Step Forward in the Development of Stable Lithium–Oxygen Batteries. ChemSusChem, 2015, 8, 3932-3940.	6.8	29
16	Monitoring the Location of Cathode-Reactions in Li-O ₂ Batteries. Journal of the Electrochemical Society, 2015, 162, A3126-A3132.	2.9	29
17	Potassium Salts as Electrolyte Additives in Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2017, 121, 3822-3829.	3.1	28
18	Nanoparticles of La0.8Ca0.2Fe0.8Ni0.2O3â~'δ perovskite for solid oxide fuel cell application. Materials Research Bulletin, 2010, 45, 1513-1519.	5.2	27

#	Article	IF	CITATIONS
19	Synthesis and electrochemical performance of La0.6Ca0.4Fe1â^'xNixO3 (x=0.1, 0.2, 0.3) material for solid oxide fuel cell cathode. Journal of Power Sources, 2009, 192, 63-69.	7.8	25
20	Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation. Applied Energy, 2013, 104, 984-991.	10.1	24
21	LiFePO4 thin films grown by pulsed laser deposition: Effect of the substrate on the film structure and morphology. Applied Surface Science, 2010, 256, 2563-2568.	6.1	23
22	A novel one step synthesized Co-free perovskite/brownmillerite nanocomposite for solid oxide fuel cells. Journal of Materials Chemistry, 2011, 21, 9682.	6.7	23
23	Magnetic ionic plastic crystal: choline[FeCl4]. Physical Chemistry Chemical Physics, 2013, 15, 12724.	2.8	23
24	Pr-doped ceria nanoparticles as intermediate temperature ionic conductors. International Journal of Hydrogen Energy, 2011, 36, 10981-10990.	7.1	22
25	Electrochemical characterization of La0.6Ca0.4Fe0.8Ni0.2O3â^î^rperovskite cathode forÂlT-SOFC. Journal of Power Sources, 2013, 239, 196-200.	7.8	22
26	Structure and impedance spectroscopy of La0.6Ca0.4Fe0.8Ni0.2O3â^'δ thin films grown by pulsed laser deposition. Journal of Power Sources, 2007, 171, 747-753.	7.8	21
27	Electrochemical characterization of La0.6Ca0.4Fe0.8Ni0.2O3 cathode on Ce0.8Gd0.2O1.9 electrolyte for IT-SOFC. International Journal of Hydrogen Energy, 2014, 39, 6675-6679.	7.1	21
28	Goldilocks and the three glymes: How Na+ solvation controls Na–O2 battery cycling. Energy Storage Materials, 2020, 29, 235-245.	18.0	21
29	Development of electrolyte-supported intermediate-temperature single-chamber solid oxide fuel cells using Ln0.7Sr0.3Fe0.8Co0.2O3â^1î´ (Ln=Pr, La, Gd) cathodes. Journal of Power Sources, 2009, 193, 774-778.	7.8	20
30	Understanding the charge/discharge mechanisms and passivation reactions in Na-O 2 batteries. Journal of Power Sources, 2017, 345, 237-246.	7.8	19
31	An Overview of Engineered Grapheneâ€Based Cathodes: Boosting Oxygen Reduction and Evolution Reactions in Lithium– and Sodium–Oxygen Batteries. ChemSusChem, 2020, 13, 1203-1225.	6.8	19
32	Structural and electrical properties of thin films of Pr0.8Sr0.2Fe0.8Ni0.2O3â~î´. Journal of Power Sources, 2007, 169, 35-39.	7.8	15
33	Novel Pr0.6Sr0.4Fe0.8Co0.2O3:Ce0.8Sm0.2O2 composite nanotubes for energy conversion and storage. Journal of Power Sources, 2012, 201, 332-339.	7.8	15
34	Optimization of La0.6Ca0.4Fe0.8Ni0.2O3–Ce0.8Sm0.2O2 composite cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196, 4332-4336.	7.8	14
35	Exploring Reaction Conditions to Improve the Magnetic Response of Cobalt-Doped Ferrite Nanoparticles. Nanomaterials, 2018, 8, 63.	4.1	13
36	Unveiling the Role of Tetrabutylammonium and Cesium Bulky Cations in Enhancing Naâ€O ₂ Battery Performance. Advanced Energy Materials, 2022, 12, .	19.5	13

#	Article	IF	CITATIONS
37	Synthesis of highly ordered three-dimensional nanostructures and the influence of the temperature on their application as solid oxide fuel cells cathodes. Journal of Power Sources, 2011, 196, 4174-4180.	7.8	12
38	Nd and Sc co-doped BiFeO3 nanopowders displaying enhanced ferromagnetism at room temperature. Journal of Alloys and Compounds, 2015, 638, 282-288.	5.5	12
39	Unraveling the Effect of Singlet Oxygen on Metal-O2 Batteries: Strategies Toward Deactivation. Frontiers in Chemistry, 2020, 8, 605.	3.6	12
40	Singlet oxygen formation in Na O2 battery cathodes catalyzed by ammonium Brönsted acid. Journal of Electroanalytical Chemistry, 2020, 872, 114265.	3.8	12
41	A straightforward synthesis of carbon nanotube–perovskite composites for solid oxide fuel cells. Journal of Materials Chemistry, 2011, 21, 10273.	6.7	11
42	Modifying the ORR route by the addition of lithium and potassium salts in Na-O2 batteries. Electrochimica Acta, 2018, 263, 102-109.	5.2	11
43	Crystal structure, magneto-structural correlation, thermal and electrical studies of an imidazolium halometallate molten salt: (trimim)[FeCl4]. RSC Advances, 2020, 10, 11200-11209.	3.6	11
44	A New Partially Deprotonated Mixed-Valence Manganese(II,III) Hydroxide–Arsenate with Electronic Conductivity: Magnetic Properties of High- and Room-Temperature Sarkinite. Inorganic Chemistry, 2012, 51, 5246-5256.	4.0	9
45	Oriented nanocrystals in SrLaMnTiO6 perovskite thin films grown by pulsed laser deposition. Journal of Alloys and Compounds, 2011, 509, 1457-1462.	5.5	8
46	(NH4): A new mixed valence vanadium(III,IV) fluoro-arsenate with ferromagnetic interactions and electronic conductivity. Journal of Solid State Chemistry, 2009, 182, 65-71.	2.9	7
47	La0.6Sr0.2Ca0.2Fe0.8Ni0.2O3 thin films obtained by pulsed laser ablation: Effect of the substrate on the electrochemical behavior. Solid State Ionics, 2011, 192, 584-590.	2.7	7
48	Unusual magnetic properties in Pr1â^'xSrxFe0.8Ni0.2O3â^'Î′â€,(xâ‰ 0 .3). Journal of Applied Physics, 2008, 103, 033902.	2.5	6
49	Nanostructured Gd0.8Sr0.2Fe0.8M0.2O3 (M=Cr, Ga) materials for solid oxide fuel cell cathodes. Physics Procedia, 2010, 8, 2-9.	1.2	5
50	Synthesis and Performance of La0.6Ca0.4Fe0.8Ni0.2O3-δ Material for Intermediate-Temperature SOFC Cathode. ECS Transactions, 2007, 7, 1157-1164.	0.5	4
51	Towards the design of contrast-enhanced agents: systematic Ga ³⁺ doping on magnetite nanoparticles. Dalton Transactions, 2022, 51, 2517-2530.	3.3	4
52	Structure and impedance spectroscopy of Pr1â^'x Sr x Fe0.8Co0.2O3â^'δ (x=0.1, 0.2, 0.3) thin films grown by laser ablation. Applied Physics A: Materials Science and Processing, 2008, 93, 655-661.	2.3	3
53	Influence of colloidal templates on the impedance spectroscopic behaviour of Pr0.7Sr0.3Fe0.8Ni0.2O3 for solid oxide fuel cell applications. Solid State Ionics, 2011, 192, 235-240.	2.7	3
54	Microstructural improvements of the gradient composite material Pr0.6Sr0.4Fe0.8Co0.2O3/Ce0.8Sm0.2O1.9 by employing vertically aligned carbon nanotubes. International Journal of Hydrogen Energy, 2014, 39, 4074-4080.	7.1	3

#	Article	IF	CITATIONS
55	Effect of Electrolyte Contribution on the Electrochemical Behaviour of Pr0.8Sr0.2Fe0.8Ga0.2O3. ECS Transactions, 2009, 25, 2799-2806.	0.5	2
56	Effect of the Strontium Content on the Electrochemical Performance of the Perovskite-Type Pr1-xSrxFe0.8Co0.2O3 Oxides. ECS Transactions, 2011, 35, 2183-2190.	0.5	2
57	Designing Perovskite Oxides for Solid Oxide Fuel Cells. , 0, , .		2
58	Substrate-induced dielectric polarization in thin films of lead-free (Sr 0.5 Bi 0.5) 2 Mn 2-x Ti x O 6-δ perovskites grown by pulsed laser deposition. Applied Surface Science, 2017, 399, 387-395.	6.1	2
59	Impact of Lithium and Potassium Cations on the Mössbauer Spectral and Electrical Properties of Two Mixed-Valence Iron(II/III) Phosphites. Chemistry of Materials, 2020, 32, 5534-5540.	6.7	2
60	Alternative anodes for Na–O ₂ batteries: the case of the Sn ₄ P ₃ alloy. Journal of Materials Chemistry A, 2022, 10, 2398-2411.	10.3	2
61	Performance of Ln0.7Sr0.3Fe0.8Co0.2O3-δ (Ln = Pr, La, Gd) Cathodes for Intermediate-Temperature SOFCs Synthesized by a Novel Gel-Combustion Route. ECS Transactions, 2007, 7, 1147-1155.	0.5	1
62	R-MnO2 nanourchins: a promising catalyst in Li-O2 batteries. Materials Research Society Symposia Proceedings, 2014, 1643, 1.	0.1	1
63	Nanostructure and Impedance Spectroscopy of Pr0.7Sr0.3Mn1-xMxO3 (M = Fe, Co, Ni; x = 0 and 0.2) Thin Films Grown by Pulsed Laser Deposition. Open Inorganic Chemistry Journal, 2009, 3, 47-55.	0.3	1
64	DESIGN OF AN INQUIRY-BASED LEARNING PROCESS APPLIED TO THE INTEGRATION OF SUSTAINABILITY IN DEGREE FINAL PROJECTS IN CHEMISTRY. , 2021, , .		0
65	Nanoteknologia: artsenikoaren erauzketarako bide berria. Ekaia (journal), 2016, , 87-105.	0.0	0
66	Nanoelikagaiak: tamainak axola duenean. Ekaia (journal), 2019, , 143-163.	0.0	0
67	DEVELOPMENT OF A MOODLE-BASED PLATFORM TO AID IN THE LEARNING PROCESS OF CHEMICAL NOMENCLATURE. , 2019, , .		0
68	(Invited) Sodium Layered Oxides in the Spotlight: Current State-of-Art and Remaining Challenges. ECS Meeting Abstracts, 2021, MA2021-02, 229-229.	0.0	0
69	PROMOTING SUSTAINABLE DEVELOPMENT IN CHEMISTRY DEGREE: IMPLEMENTATION OF AN E-LEARNING PLATFORM. EDULEARN Proceedings, 2022, , .	0.0	0