JuliÃ;n Perera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4396856/publications.pdf

Version: 2024-02-01

25	691	16	25
papers	citations	h-index	g-index
25	25	25	538
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metabolic engineering of Rhodococcus ruber Chol-4: A cell factory for testosterone production. PLoS ONE, 2019, 14, e0220492.	1.1	13
2	New insights into the genome of Rhodococcus ruber strain Chol-4. BMC Genomics, 2019, 20, 332.	1.2	19
3	Functional differentiation of 3-ketosteroid \hat{l} "1-dehydrogenase isozymes in Rhodococcus ruber strain Chol-4. Microbial Cell Factories, 2017, 16, 42.	1.9	30
4	Functional characterization of 3-ketosteroid 9α-hydroxylases in Rhodococcus ruber strain chol-4. Journal of Steroid Biochemistry and Molecular Biology, 2017, 172, 176-187.	1.2	18
5	Analysis of Intermediates of Steroid Transformations in Resting Cells by Thin-Layer Chromatography (TLC). Methods in Molecular Biology, 2017, 1645, 347-360.	0.4	1
6	Cholesterol to cholestenone oxidation by ChoG, the main extracellular cholesterol oxidase of Rhodococcus ruber strain Chol-4. Journal of Steroid Biochemistry and Molecular Biology, 2014, 139, 33-44.	1.2	17
7	Draft Genome Sequence of the Steroid Degrader Rhodococcus ruber Strain Chol-4. Genome Announcements, 2013, $1,\dots$	0.8	8
8	Molecular characterization of three 3-ketosteroid-Δ1-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4. Journal of Steroid Biochemistry and Molecular Biology, 2012, 132, 271-281.	1.2	66
9	ChoG is the main inducible extracellular cholesterol oxidase of Rhodococcus sp. strain CECT3014. Microbiological Research, 2011, 166, 403-418.	2.5	35
10	Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1011-1015.	0.8	39
11	Morphological, Physiological, and Molecular Characterization of a Newly Isolated Steroid-Degrading Actinomycete, Identified as Rhodococcus ruber Strain Chol-4. Current Microbiology, 2009, 59, 548-553.	1.0	35
12	Genetic analysis of phenylacetic acid catabolism in Arthrobacter oxydans CECT386. Archives of Microbiology, 2008, 190, 89-100.	1.0	9
13	The styreneâ€responsive StyS/StyR regulation system controls expression of an auxiliary phenylacetylâ€coenzyme A ligase: implications for rapid metabolic coupling of the styrene upperâ€and lowerâ€degradative pathways. Molecular Microbiology, 2008, 69, 317-330.	1.2	12
14	Coregulation by Phenylacetyl-Coenzyme A-Responsive PaaX Integrates Control of the Upper and Lower Pathways for Catabolism of Styrene by Pseudomonas sp. Strain Y2. Journal of Bacteriology, 2006, 188, 4812-4821.	1.0	29
15	Characterization of a second functional gene cluster for the catabolism of phenylacetic acid in Pseudomonas sp. strain Y2. Gene, 2004, 341, 167-179.	1.0	37
16	Design of catabolic cassettes for styrene biodegradation. Antonie Van Leeuwenhoek, 2003, 84, 17-24.	0.7	15
17	Construction of a bacterial biosensor for styrene. Journal of Biotechnology, 2003, 102, 301-306.	1.9	25
18	Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2. Gene, 2003, 319, 71-83.	1.0	28

#	Article	IF	CITATIONS
19	pT3.2I, the Smallest Plasmid of Thiobacillus T3.2. Plasmid, 2000, 44, 1-11.	0.4	4
20	The mer operon of the acidophilic bacterium Thiobacillus T3.2 diverges from its Thiobacillus ferrooxidans counterpart. Extremophiles, 1999, 3, 35-43.	0.9	20
21	Characterization of a new metal-mobilizing Thiobacillus isolate. Archives of Microbiology, 1993, 159, 237-243.	1.0	17
22	B104, a new dispersed repeated gene family in Drosophila melanogaster and its analogies with retroviruses. Journal of Molecular Biology, 1982, 157, 435-451.	2.0	170
23	Histone H4 from the fruit fly Ceratitis capitata. Purification and characterization. Insect Biochemistry, 1979, 9, 39-42.	1.8	1
24	Histone H4 from the fruit fly Ceratitis capitata. Circular dichroism studies. Insect Biochemistry, 1979, 9, 43-48.	1.8	28
25	Histones from the Fruit Fly Ceratitis capitata. Isolation and Characterization. FEBS Journal, 1974, 48, 53-61.	0.2	15