Steven Friso Koelewijn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4396640/publications.pdf

Version: 2024-02-01

22 papers 5,245 citations

393982 19 h-index 22 g-index

23 all docs 23 docs citations

23 times ranked 3857 citing authors

#	Article	IF	CITATIONS
1	Conventional versus microwave-assisted roasting of sulfidic tailings: Mineralogical transformation and metal leaching behavior. Minerals Engineering, 2022, 183, 107587.	1.8	14
2	A guide towards safe, functional and renewable BPA alternatives by rational molecular design: structure–property and structure–toxicity relationships. Polymer Chemistry, 2021, 12, 5870-5901.	1.9	19
3	Towards Lignin-Derived Chemicals Using Atom-Efficient Catalytic Routes. Trends in Chemistry, 2020, 2, 898-913.	4.4	22
4	A sustainable wood biorefinery for low–carbon footprint chemicals production. Science, 2020, 367, 1385-1390.	6.0	631
5	Catalytic Strategies Towards Lignin‑Derived Chemicals. Topics in Current Chemistry Collections, 2020, , 129-168.	0.2	10
6	Reductive catalytic fractionation of black locust bark. Green Chemistry, 2019, 21, 5841-5851.	4.6	43
7	Regioselective synthesis, isomerisation, <i>in vitro</i> oestrogenic activity, and copolymerisation of bisguaiacol F (BGF) isomers. Green Chemistry, 2019, 21, 6622-6633.	4.6	28
8	Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform. Green Chemistry, 2018, 20, 1050-1058.	4.6	66
9	Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 2018, 47, 852-908.	18.7	1,708
10	Catalytic lignocellulose biorefining in <i>n</i> -butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green Chemistry, 2018, 20, 4607-4619.	4.6	113
11	Catalytic Strategies Towards Lignin-Derived Chemicals. Topics in Current Chemistry, 2018, 376, 36.	3.0	75
12	Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chemistry, 2017, 19, 2561-2570.	4.6	102
13	Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy and Environmental Science, 2017, 10, 1551-1557.	15.6	503
14	Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al ₂ O ₃ catalyst pellets during lignin-first fractionation. Green Chemistry, 2017, 19, 3313-3326.	4.6	251
15	Zeolites as sustainable catalysts for the selective synthesis of renewable bisphenols from ligninâ€derived monomers. ChemSusChem, 2017, 10, 2249-2257.	3.6	31
16	Selective Conversion of Lignin-Derivable 4-Alkylguaiacols to 4-Alkylcyclohexanols over Noble and Non-Noble-Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2016, 4, 5336-5346.	3.2	66
17	Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood. ACS Sustainable Chemistry and Engineering, 2016, 4, 6894-6904.	3.2	120
18	Influence of Acidic (H ₃ PO ₄) and Alkaline (NaOH) Additives on the Catalytic Reductive Fractionation of Lignocellulose. ACS Catalysis, 2016, 6, 2055-2066.	5 . 5	191

#	Article	IF	CITATIONS
19	Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood. Chemical Communications, 2015, 51, 13158-13161.	2.2	298
20	Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy and Environmental Science, 2015, 8, 1748-1763.	15.6	688
21	Influence of bio-based solvents on the catalytic reductive fractionation of birch wood. Green Chemistry, 2015, 17, 5035-5045.	4.6	214
22	Regioselective synthesis of renewable bisphenols from 2,3-pentanedione and their application as plasticizers. Green Chemistry, 2014, 16, 1999-2007.	4.6	28