List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4396547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Density and viscosity of several pure and water-saturated ionic liquids. Green Chemistry, 2006, 8, 172-180.	4.6	755
2	Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283K and 343K and at pressures close to atmospheric. Journal of Chemical Thermodynamics, 2006, 38, 490-502.	1.0	382
3	Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilibria, 2006, 240, 87-95.	1.4	276
4	Industrial Applications of Ionic Liquids. Molecules, 2020, 25, 5207.	1.7	274
5	Prediction of Ionic Liquid Properties. I. Volumetric Properties as a Function of Temperature at 0.1 MPa. Journal of Chemical & Engineering Data, 2008, 53, 716-726.	1.0	233
6	High-Pressure Volumetric Properties of Imidazolium-Based Ionic Liquids:  Effect of the Anion. Journal of Chemical & Engineering Data, 2007, 52, 2204-2211.	1.0	221
7	Influence of the Cation on the Solubility of CO2 and H2 in Ionic Liquids Based on the Bis(trifluoromethylsulfonyl)imide Anion. Journal of Solution Chemistry, 2007, 36, 967-979.	0.6	185
8	Heat Capacities of Ionic Liquids as a Function of Temperature at 0.1 MPa. Measurement and Prediction. Journal of Chemical & Engineering Data, 2008, 53, 2148-2153.	1.0	173
9	Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 20054.	1.3	141
10	Prediction of Ionic Liquid Properties. II. Volumetric Properties as a Function of Temperature and Pressure. Journal of Chemical & Engineering Data, 2008, 53, 2133-2143.	1.0	139
11	Volumetric properties, viscosity and refractive index of the protic ionic liquid, pyrrolidinium octanoate, in molecular solvents. Journal of Chemical Thermodynamics, 2010, 42, 834-845.	1.0	135
12	Reduction of Carbon Dioxide to Formate at Low Overpotential Using a Superbase Ionic Liquid. Angewandte Chemie - International Edition, 2015, 54, 14164-14168.	7.2	134
13	Thermophysical Properties of Ionic Liquids. Topics in Current Chemistry, 2009, 290, 185-212.	4.0	109
14	Aggregation behavior in water of new imidazolium and pyrrolidinium alkycarboxylates protic ionic liquids. Journal of Colloid and Interface Science, 2009, 340, 104-111.	5.0	108
15	Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based Protic Ionic) Tj ETQq1 1 0	.7843]4 rg 1.0	;BT 10yerlock
16	Physical properties of a new Deep Eutectic Solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochimica Acta, 2013, 102, 120-126.	2.6	103
17	Ionic liquids for post-combustion CO 2 capture by physical absorption: Thermodynamic, kinetic and process analysis. International Journal of Greenhouse Gas Control, 2017, 61, 61-70.	2.3	103
18	Evaluation of Gas Solubility Prediction in Ionic Liquids using COSMOthermX. Journal of Chemical & amp: Engineering Data, 2009, 54, 2005-2022.	1.0	98

#	Article	IF	CITATIONS
19	Optimized ionic liquids for toluene absorption. AICHE Journal, 2013, 59, 1648-1656.	1.8	90
20	Liquid densities, heat capacities, refractive index and excess quantities for {protic ionic liquids+water} binary system. Journal of Chemical Thermodynamics, 2009, 41, 799-808.	1.0	88
21	Comparative Performances of Birnessite and Cryptomelane MnO ₂ as Electrode Material in Neutral Aqueous Lithium Salt for Supercapacitor Application. Journal of Physical Chemistry C, 2013, 117, 7408-7422.	1.5	88
22	Absorption refrigeration cycles based on ionic liquids: Refrigerant/absorbent selection by thermodynamic and process analysis. Applied Energy, 2018, 213, 179-194.	5.1	88
23	Mixing Enthalpy for Binary Mixtures Containing Ionic Liquids. Chemical Reviews, 2016, 116, 6075-6106.	23.0	85
24	Deep Eutectic Solvents Based on <i>N</i> -Methylacetamide and a Lithium Salt as Electrolytes at Elevated Temperature for Activated Carbon-Based Supercapacitors. Journal of Physical Chemistry C, 2014, 118, 4033-4042.	1.5	83
25	Type 3 porous liquids based on non-ionic liquid phases – a broad and tailorable platform of selective, fluid gas sorbents. Chemical Science, 2020, 11, 2077-2084.	3.7	81
26	Thermodynamic Properties of Mixtures Containing Ionic Liquids. 4. LLE of Binary Mixtures of [C2MIM][NTf2] with Propan-1-ol, Butan-1-ol, and Pentan-1-ol and [C4MIM][NTf2] with Cyclohexanol and 1,2-Hexanediol Including Studies of the Influence of Small Amounts of Water. Journal of Chemical & Engineering Data, 2005, 50, 956-960.	1.0	80
27	Sustainable Cyclic Carbonate Production, Utilizing Carbon Dioxide and Azolate Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2017, 5, 5635-5641.	3.2	76
28	Solubility of carbon dioxide and ethane in three ionic liquids based on the bis{(trifluoromethyl)sulfonyl}imide anion. Fluid Phase Equilibria, 2007, 257, 27-34.	1.4	74
29	Techno-Economic Feasibility of Selective CO ₂ Capture Processes from Biogas Streams Using Ionic Liquids as Physical Absorbents. Energy & Fuels, 2016, 30, 5052-5064.	2.5	72
30	Thermophysical Properties of Ammonium-Based Bis{(trifluoromethyl)sulfonyl}imide Ionic Liquids: Volumetric and Transport Properties. Journal of Chemical & Engineering Data, 2012, 57, 2227-2235.	1.0	71
31	Transport Properties Investigation of Aqueous Protic Ionic Liquid Solutions through Conductivity, Viscosity, and NMR Self-Diffusion Measurements. Journal of Physical Chemistry B, 2012, 116, 4228-4238.	1.2	70
32	Physicochemical Characterization of Morpholinium Cation Based Protic Ionic Liquids Used As Electrolytes. Journal of Physical Chemistry B, 2010, 114, 1757-1766.	1.2	69
33	COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf 2] + [emim][DCA]} ionic liquid mixture. Separation and Purification Technology, 2018, 190, 211-227.	3.9	67
34	Volumetric Properties, Viscosities, and Isobaric Heat Capacities of Imidazolium Octanoate Protic Ionic Liquid in Molecular Solvents. Journal of Chemical & Engineering Data, 2010, 55, 5719-5728.	1.0	66
35	Viscous Behavior of Imidazolium-Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 16774-16785.	1.8	64
36	Liquid–liquid miscibility and volumetric properties of aqueous solutions of ionic liquids as a function of temperature. Journal of Chemical Thermodynamics, 2009, 41, 1206-1214.	1.0	63

#	Article	IF	CITATIONS
37	Speed of Sound and Ultrasound Absorption in Ionic Liquids. Chemical Reviews, 2017, 117, 3883-3929.	23.0	63
38	Effect of Acetonitrile on the Solubility of Carbon Dioxide in 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide. Industrial & Engineering Chemistry Research, 2006, 45, 8180-8188.	1.8	61
39	Thermophysical properties, low pressure solubilities and thermodynamics of solvation of carbon dioxide and hydrogen in two ionic liquids based on the alkylsulfate anion. Green Chemistry, 2008, 10, 944.	4.6	61
40	Azepanium-based ionic liquids as green electrolytes for high voltage supercapacitors. Journal of Power Sources, 2015, 273, 931-936.	4.0	61
41	A new insight into pure and water-saturated quaternary phosphonium-based carboxylate ionic liquids: Density, heat capacity, ionic conductivity, thermogravimetric analysis, thermal conductivity and viscosity. Journal of Chemical Thermodynamics, 2018, 121, 97-111.	1.0	59
42	CO2 Capture in Wet and Dry Superbase Ionic Liquids. Journal of Solution Chemistry, 2015, 44, 511-527.	0.6	58
43	High pressure CO2 absorption studies on imidazolium-based ionic liquids: Experimental and simulation approaches. Fluid Phase Equilibria, 2013, 351, 74-86.	1.4	56
44	Transport properties of protic ionic liquids, pure and in aqueous solutions: Effects of the anion and cation structure. Fluid Phase Equilibria, 2010, 297, 13-22.	1.4	52
45	Phosphoric acid-mediated green preparation of regenerated cellulose spheres and their use for all-cellulose cross-linked superabsorbent hydrogels. International Journal of Biological Macromolecules, 2020, 162, 136-149.	3.6	52
46	Understanding the heat capacity enhancement in ionic liquid-based nanofluids (ionanofluids). Journal of Molecular Liquids, 2018, 253, 326-339.	2.3	51
47	Influence of water on the carbon dioxide absorption by 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. Fluid Phase Equilibria, 2010, 294, 98-104.	1.4	49
48	Effect of Pressure on Decoupling of Ionic Conductivity from Segmental Dynamics in Polymerized Ionic Liquids. Macromolecules, 2015, 48, 8660-8666.	2.2	48
49	Mixtures of Azepanium Based Ionic Liquids and Propylene Carbonate as High Voltage Electrolytes for Supercapacitors. Electrochimica Acta, 2015, 153, 426-432.	2.6	48
50	Comparative study on transport properties for LiFAP and LiPF6 in alkyl-carbonates as electrolytes through conductivity, viscosity and NMR self-diffusion measurements. Electrochimica Acta, 2013, 114, 95-104.	2.6	47
51	Comparative Study on Performances of Trimethyl-Sulfonium and Trimethyl-Ammonium Based Ionic Liquids in Molecular Solvents as Electrolyte for Electrochemical Double Layer Capacitors. Journal of Physical Chemistry C, 2013, 117, 10315-10325.	1.5	47
52	Viscosity and Carbon Dioxide Solubility for LiPF ₆ , LiTFSI, and LiFAP in Alkyl Carbonates: Lithium Salt Nature and Concentration Effect. Journal of Physical Chemistry B, 2014, 118, 3973-3980.	1.2	47
53	Isobaric and Isochoric Heat Capacities of Imidazolium-Based and Pyrrolidinium-Based Ionic Liquids as a Function of Temperature: Modeling of Isobaric Heat Capacity. Industrial & Engineering Chemistry Research, 2017, 56, 2592-2606.	1.8	47
54	Crosslinked carboxymethyl cellulose-hydroxyethyl cellulose hydrogel films for adsorption of cadmium and methylene blue from aqueous solutions. Surfaces and Interfaces, 2021, 24, 101124.	1.5	47

#	Article	IF	CITATIONS
55	Further development of the predictive models for physical properties of pure ionic liquids: Thermal conductivity and heat capacity. Journal of Chemical Thermodynamics, 2018, 118, 1-15.	1.0	45
56	Selective adsorptive separation of cyclohexane over benzene using thienothiophene cages. Chemical Science, 2021, 12, 5315-5318.	3.7	45
57	Low pressure carbon dioxide solubility in pure electrolyte solvents for lithium-ion batteries as a function of temperature. Measurement and prediction. Journal of Chemical Thermodynamics, 2012, 50, 71-79.	1.0	44
58	A class of efficient short-chain fluorinated catanionic surfactants. Green Chemistry, 2016, 18, 1234-1239.	4.6	44
59	Interfacial Properties of LiTFSI and LiPF ₆ -Based Electrolytes in Binary and Ternary Mixtures of Alkylcarbonates on Graphite Electrodes and Celgard Separator. Industrial & Engineering Chemistry Research, 2012, 51, 5240-5245.	1.8	43
60	Physicochemical Investigation of Adiponitrile-Based Electrolytes for Electrical Double Layer Capacitor. Journal of Physical Chemistry C, 2014, 118, 14107-14123.	1.5	43
61	Large deformation of anisotropic austenitic stainless steel sheets at room temperature: Multi-axial experiments and phenomenological modeling. Journal of the Mechanics and Physics of Solids, 2008, 56, 2935-2956.	2.3	42
62	A Comparative Study on the Thermophysical Properties for Two Bis[(trifluoromethyl)sulfonyl]imide-Based Ionic Liquids Containing the Trimethyl-Sulfonium or the Trimethyl-Ammonium Cation in Molecular Solvents. Journal of Physical Chemistry B, 2013, 117, 1389-1402.	1.2	42
63	The use of binary mixtures of 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide and aliphatic nitrile solvents as electrolyte for supercapacitors. Electrochimica Acta, 2016, 220, 146-155.	2.6	41
64	Structure and thermal properties of salicylate-based-protic ionic liquids as new heat storage media. COSMO-RS structure characterization and modeling of heat capacities. Physical Chemistry Chemical Physics, 2014, 16, 3549.	1.3	39
65	Effect of cation structure on the oxygen solubility and diffusivity in a range of bis{(trifluoromethyl)sulfonyl}imide anion based ionic liquids for lithium–air battery electrolytes. Physical Chemistry Chemical Physics, 2016, 18, 11251-11262.	1.3	39
66	Thermophysical and Electrochemical Properties of Ethereal Functionalised Cyclic Alkylammoniumâ€based Ionic Liquids as Potential Electrolytes for Electrochemical Applications. ChemPhysChem, 2017, 18, 2040-2057.	1.0	38
67	Physical–Chemical Characterization of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis{(trifluoromethyl)sulfonyl}imide and Aliphatic Nitrile Solvents as Potential Electrolytes for Electrochemical Energy Storage Applications. Journal of Chemical & Engineering Data, 2017, 62, 376-390.	1.0	37
68	Physico-Chemical Properties of Non-Newtonian Shear Thickening Diisopropyl-ethylammonium-Based Protic Ionic Liquids and Their Mixtures with Water and Acetonitrile. Journal of Chemical & Engineering Data, 2011, 56, 556-564.	1.0	36
69	The Influence of Cation Structure on the Chemical–Physical Properties of Protic Ionic Liquids. Journal of Physical Chemistry C, 2016, 120, 8525-8533.	1.5	35
70	New Method for the Estimation of Viscosity of Pure and Mixtures of Ionic Liquids Based on the UNIFAC–VISCO Model. Journal of Chemical & Engineering Data, 2016, 61, 2160-2169.	1.0	35
71	Are Alkyl Sulfate-Based Protic and Aprotic Ionic Liquids Stable with Water and Alcohols? A Thermodynamic Approach. Journal of Physical Chemistry B, 2013, 117, 1938-1949.	1.2	33
72	Type 3 Porous Liquids for the Separation of Ethane and Ethene. ACS Applied Materials & amp; Interfaces, 2021, 13, 932-936.	4.0	32

JOHAN JACQUEMIN

#	Article	IF	CITATIONS
73	Volumetric properties and enthalpies of solution of alcohols CkH2k+1OH (k=1, 2, 6) in 1-methyl-3-alkylimidazolium bis(trifluoromethylsulfonyl)imide {[C1CnIm][NTf2] n=2, 4, 6, 8, 10} ionic liquids. Journal of Chemical Thermodynamics, 2011, 43, 1708-1718.	1.0	31
74	Synthesis and Thermophysical Properties of Etherâ€Functionalized Sulfonium Ionic Liquids as Potential Electrolytes for Electrochemical Applications. ChemPhysChem, 2016, 17, 3992-4002.	1.0	30
75	Ionic liquid-based nanofluids (ionanofluids) for thermal applications: an experimental thermophysical characterization. Pure and Applied Chemistry, 2019, 91, 1309-1340.	0.9	29
76	Investigating the Effect of NO on the Capture of CO2 Using Superbase Ionic Liquids for Flue Gas Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 3567-3574.	3.2	29
77	Low pressure carbon dioxide solubility in lithium-ion batteries based electrolytes as a function of temperature. Measurement and prediction. Journal of Chemical Thermodynamics, 2013, 61, 32-44.	1.0	28
78	Effect of the Presence of MEA on the CO ₂ Capture Ability of Superbase Ionic Liquids. Journal of Chemical & Engineering Data, 2016, 61, 1092-1100.	1.0	28
79	On the scaling behavior of electric conductivity in [C ₄ mim][NTf ₂]. Physical Chemistry Chemical Physics, 2014, 16, 20444-20450.	1.3	27
80	Thermal Properties of Alkyl-triethylammonium bis \$\${\$\$ { (trifluoromethyl)sulfonyl \$\$}\$\$ } imide Ionic Liquids. Journal of Solution Chemistry, 2015, 44, 790-810.	0.6	27
81	An ether-functionalised cyclic sulfonium based ionic liquid as an electrolyte for electrochemical double layer capacitors. Journal of Power Sources, 2016, 326, 549-559.	4.0	27
82	Enhancing Liquid-Phase Olefin–Paraffin Separations Using Novel Silver-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2015, 60, 28-36.	1.0	26
83	Ultrasonic Relaxation Study of 1-Alkyl-3-methylimidazolium-Based Room-Temperature Ionic Liquids: Probing the Role of Alkyl Chain Length in the Cation. Journal of Physical Chemistry B, 2016, 120, 3569-3581.	1.2	26
84	Cytotoxicity of Ionic Liquids on Normal Human Dermal Fibroblasts in the Context of Their Present and Future Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 7649-7657.	3.2	26
85	Liquid–Liquid Equilibria of Ionic Liquids–Water–Acetic Acid Mixtures. Journal of Chemical & Engineering Data, 2017, 62, 653-664.	1.0	25
86	Phase Behaviour, Interactions, and Structural Studies of (Amines+Ionic Liquids) Binary Mixtures. ChemPhysChem, 2012, 13, 1825-1835.	1.0	24
87	Tunable thermomorphism and applications of ionic liquid analogues of Girard's reagents. Green Chemistry, 2014, 16, 4115-4121.	4.6	24
88	Good reporting practice for thermophysical and thermochemical property measurements (IUPAC) Tj ETQq0 0 0	rgBT /Over	[.] lock ₄ 10 Tf 50
89	Statistical Refinement and Fitting of Experimental Viscosity-to-Temperature Data in Ionic Liquids. Industrial & Engineering Chemistry Research, 2014, 53, 10475-10484.	1.8	23

90Thermal Conductivity Enhancement Phenomena in Ionic Liquid-Based Nanofluids (Ionanofluids).0.52390Australian Journal of Chemistry, 2019, 72, 21.0.523

#	Article	IF	CITATIONS
91	Can the scaling behavior of electric conductivity be used to probe the self-organizational changes in solution with respect to the ionic liquid structure? The case of [C ₈ MIM][NTf ₂]. Soft Matter, 2015, 11, 6520-6526.	1.2	22
92	Understanding the Competitive Gas Absorption of CO ₂ and SO ₂ in Superbase Ionic Liquids. Industrial & Engineering Chemistry Research, 2018, 57, 17033-17042.	1.8	22
93	CO2 capture and electrochemical conversion using superbasic [P66614][124Triz]. Faraday Discussions, 2015, 183, 389-400.	1.6	21
94	High Pressure Speed of Sound and Related Thermodynamic Properties of 1-Alkyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imides (from 1-Propyl- to 1-Hexyl-). Journal of Chemical & Engineering Data, 2016, 61, 3794-3805.	1.0	21
95	The addition of CO ₂ to four superbase ionic liquids: a DFT study. Physical Chemistry Chemical Physics, 2015, 17, 28674-28682.	1.3	20
96	Optimizing Host–Guest Selectivity for Ethylbenzene Capture Toward Superior Styrene Purification. Chemistry of Materials, 2022, 34, 197-202.	3.2	20
97	Excess molar volumes and excess molar enthalpies in binary systems N-alkyl-triethylammonium bis(trifluoromethylsulfonyl)imide+methanol. Fluid Phase Equilibria, 2014, 363, 156-166.	1.4	19
98	Toward Designing "Sweet―Ionic Liquids Containing a Natural Terpene Moiety as Effective Wood Preservatives. ACS Sustainable Chemistry and Engineering, 2019, 7, 15628-15639.	3.2	19
99	Low pressure methane solubility in lithium-ion batteries based solvents and electrolytes as a function of temperature. Measurement and prediction. Journal of Chemical Thermodynamics, 2014, 79, 49-60.	1.0	17
100	Alternative Electrolytes for Li-Ion Batteries Using Glutaronitrile and 2-methylglutaronitrile with Lithium Bis(trifluoromethanesulfonyl) Imide. Journal of the Electrochemical Society, 2019, 166, A3487-A3495.	1.3	17
101	How is charge transport different in ionic liquids? The effect of high pressure. Physical Chemistry Chemical Physics, 2017, 19, 14141-14147.	1.3	16
102	Effect of mixed anions on the transport properties and performance of an ionic liquid-based electrolyte for lithium-ion batteries. Pure and Applied Chemistry, 2019, 91, 1361-1381.	0.9	16
103	Comparative study of effect of alkyl chain length on thermophysical characteristics of five N-alkylpyridinium bis(trifluoromethylsulfonyl)imides with selected imidazolium-based ionic liquids. Journal of Molecular Liquids, 2019, 278, 401-412.	2.3	16
104	Catalytic properties of beta zeolite exchanged with Pd and Fe for toluene total oxidation. Studies in Surface Science and Catalysis, 2002, 142, 699-706.	1.5	15
105	Mutual Solubilities of Ammonium-Based Ionic Liquids with Water and with Water/Methanol Mixture. Procedia Engineering, 2012, 42, 1229-1241.	1.2	15
106	Structuring reductive media containing protic ionic liquids and their application to the formation of metallic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 445, 1-11.	2.3	15
107	A Fluctuation Equation of State for Prediction of High-Pressure Densities of Ionic Liquids. Scientific Reports, 2017, 7, 5563.	1.6	15
108	Transformation of vaterite into calcite in the absence and the presence of copper(II) species. Journal of Thermal Analysis and Calorimetry, 2003, 74, 21-27.	2.0	14

#	Article	IF	CITATIONS
109	Phase Equilibria of Binary and Ternary Systems Containing ILs, Dodecane, and Cyclohexanecarboxylic Acid. Separation Science and Technology, 2012, 47, 312-324.	1.3	14
110	High-pressure phase equilibrium in the {carbon dioxide (1) + 1-chloropropane (2)} binary system. Journal of Chemical Thermodynamics, 2015, 91, 165-171.	1.0	14
111	On the Performances of Ionic Liquid-Based Electrolytes for Li-NMC Batteries. Journal of Solution Chemistry, 2015, 44, 769-789.	0.6	14
112	Development of a diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) cell for the in situ analysis of co-electrolysis in a solid oxide cell. Faraday Discussions, 2015, 182, 97-111.	1.6	14
113	Tuning the dynamics of imidazolium-based ionic liquids via hydrogen bonding. I. The viscous regime. Journal of Chemical Physics, 2020, 153, 194501.	1.2	14
114	Acoustic and Volumetric Properties of Diluted Solutions of Water in Ionic Liquids. Journal of Solution Chemistry, 2015, 44, 824-837.	0.6	13
115	New Method Based on the UNIFAC–VISCO Model for the Estimation of Ionic Liquids Viscosity Using the Experimental Data Recommended by Mathematical Gnostics. Journal of Chemical & Engineering Data, 2016, 61, 3908-3921.	1.0	13
116	Electrochemistry: general discussion. Faraday Discussions, 2018, 206, 405-426.	1.6	13
117	(p,ij̃T) data of 1-butyl-3-methylimidazolium hexafluorophosphate. Journal of Chemical Thermodynamics, 2020, 141, 105954.	1.0	13
118	Guidelines for designing highly concentrated electrolytes for low temperature applications. Chemical Communications, 2020, 56, 9830-9833.	2.2	13
119	Tunable gold nanoparticles shape and size in reductive and structuring media containing protic ionic liquids. Ionics, 2013, 19, 1783-1790.	1.2	12
120	Thermodynamic Properties of Dichloromethane, Bromochloromethane, and Dibromomethane under Elevated Pressure: Experimental Results and SAFT-VR Mie Predictions. Industrial & Engineering Chemistry Research, 2015, 54, 720-730.	1.8	12
121	Acyclic and Cyclic Alkyl and Etherâ€Functionalised Sulfonium Ionic Liquids Based on the [TFSI] ^{â^'} and [FSI] ^{â^'} Anions as Potential Electrolytes for Electrochemical Applications. ChemPhysChem, 2018, 19, 3226-3236.	1.0	12
122	Impact of the aqueous pyrrolidinium hydrogen sulfate electrolyte formulation on transport properties and electrochemical performances for polyaniline-based supercapacitor. Journal of Power Sources, 2019, 431, 162-169.	4.0	12
123	Induced Protic Behaviour in Aprotonic Ionic Liquids by Anion Basicity for Efficient Carbon Dioxide Capture. ChemPhysChem, 2020, 21, 1369-1374.	1.0	12
124	Temperature- and Pressure-Induced Structural Changes of Cobalt(II) in a Phosphonium-Based Ionic Liquid. Journal of Physical Chemistry C, 2016, 120, 10156-10161.	1.5	11
125	An introduction to zwitterionic salts. Green Chemistry, 2017, 19, 4007-4011.	4.6	11
126	Liquid Phase Behavior in Systems of 1-Butyl-3-alkylimidazolium bis{(trifluoromethyl)sulfonyl}imide Ionic Liquids with Water: Influence of the Structure of the C5 Alkyl Substituent. Journal of Solution Chemistry, 2017, 46, 1456-1474.	0.6	11

#	Article	IF	CITATIONS
127	Phenylacetonitrile (C6H5CH2CN) Ionic Liquid Blends as Alternative Electrolytes for Safe and High-Performance Supercapacitors. Molecules, 2020, 25, 2697.	1.7	11
128	Factors affecting bubble size in ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 14306-14318.	1.3	11
129	Comments and Additional Work on "High-Pressure Volumetric Properties of Imidazolium-Based Ionic Liquids: Effect of the Anion― Journal of Chemical & Engineering Data, 2012, 57, 2409-2414.	1.0	10
130	Group Contribution Method for Evaluation of Volumetric Properties of Ionic Liquids Using Experimental Data Recommended by Mathematical Gnostics. Industrial & Engineering Chemistry Research, 2017, 56, 6827-6840.	1.8	10
131	Supramolecular Selfâ€Assembly of Nanoconfined Ionic Liquids for Fast Anisotropic Ion Transport. Advanced Functional Materials, 2019, 29, 1905054.	7.8	10
132	Peculiar relaxation dynamics of propylene carbonate derivatives. Journal of Chemical Physics, 2019, 150, 044504.	1.2	10
133	Combined Experimental and Theoretical Study of the Competitive Absorption of CO ₂ and NO ₂ by a Superbase Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2021, 9, 7578-7586.	3.2	10
134	Physical and Electrochemical Investigations into Blended Electrolytes Containing a Glyme Solvent and Two Bis { (trifluoromethyl)sulfonyl } imide-Based Ionic Liquids. Journal of the Electrochemical Society, 2017, 164, H5124-H5134.	1.3	9
135	Highly Selective Reduction of <i>α, β</i> â€Unsaturated Aldehydes and Ketones under Ambient Conditions using Tetraalkylphosphoniumâ€based Ionic Liquids. ChemistrySelect, 2018, 3, 11706-11711.	0.7	9
136	Communication: Inflection in the pressure dependent conductivity of the protic ionic liquid C8HIM NTf2. Journal of Chemical Physics, 2017, 146, .	1.2	8
137	Structure and dynamics of ionic liquids: general discussion. Faraday Discussions, 2018, 206, 291-337.	1.6	8
138	Phase behaviour and thermodynamics: general discussion. Faraday Discussions, 2017, 206, 113-139.	1.6	8
139	New method based on the UNIFAC-VISCO model for the estimation of dynamic viscosity of (ionic) Tj ETQq1 1 0.7	784314 rg 1.4	BT ₇ /Overlock
140	Thermophysical properties of ionic liquids. ACS Symposium Series, 2010, , 43-60.	0.5	6
141	Use of water in aiding olefin/paraffin (liquid+liquid) extraction via complexation with a silver bis(trifluoromethylsulfonyl)imide salt. Journal of Chemical Thermodynamics, 2014, 77, 230-240.	1.0	6
142	Impact of ionic liquids on silver thermoplastic polyurethane composite membranes for propane/propylene separation. Arabian Journal of Chemistry, 2020, 13, 404-415.	2.3	6
143	Solid–liquid equilibria in systems [C _x mim][Tf ₂ N] with diethylamine. Pure and Applied Chemistry, 2015, 87, 453-460.	0.9	5
144	Universal scaling behavior of entropy and conductivity in ionic liquids. Journal of Molecular Liquids, 2020, 316, 113824.	2.3	5

JOHAN JACQUEMIN

#	Article	IF	CITATIONS
145	Interactions of Gases with Ionic Liquids: Experimental Approach. ACS Symposium Series, 2005, , 207-218.	0.5	4
146	The development of the UNIFAC-CONDUCT model as a novel approach for the estimation of the conductivity of pure ionic liquids. Fluid Phase Equilibria, 2017, 449, 60-67.	1.4	4
147	One-pot approach to access 2H-pyran-2-ones bearing an amino group via the Pd-catalyzed Sonogashira coupling of (Z)-3-iodovinylic esters followed by intramolecular iodocyclization. Tetrahedron Letters, 2019, 60, 151087.	0.7	4
148	Introduction on Special Issue: Ionic Liquids. Journal of Solution Chemistry, 2015, 44, 379-381.	0.6	3
149	Using Thermodynamics to Assess the Molecular Interactions of Tetrabutylphosphonium Carboxylate–Water Mixtures. Australian Journal of Chemistry, 2019, 72, 144.	0.5	3

Efficient Synthesis of Polysubstituted Furans through a Base $\hat{a} \in \mathbb{P}$ romoted Oxacyclization of (Z) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 54.

151	Prediction of Gas Solubility using COSMOthermX. ACS Symposium Series, 2010, , 359-383.	0.5	2
152	Tandem Oneâ€Pot Approach to <i>N</i> â€Substituted Lactones by Carbon–Carbon Coupling Followed by 5â€ <i>exo</i> â€dig or 6â€ <i>endo</i> â€dig Cyclization: DFT Studies and Cyclization Mode. European Journal of Organic Chemistry, 2019, 2019, 7439-7447.	1.2	2
153	Carbon Nanotube-Based Ionanofluids for Efficient Energy Storage: Thermophysical Properties' Determination and Advanced Data Analysis. Industrial & Engineering Chemistry Research, 2021, 60, 7714-7728.	1.8	2
154	Efficient Synthesis of tert â€Butyl 2,4â€Dialkynylated and 2â€Alkynylatedâ€4â€Arylatedâ€1 H â€Imidazoleâ€1â€0 via Regioselective Sonogashira Crossâ€Coupling Reaction. European Journal of Organic Chemistry, 2021, 2021, 4495-4507.	Carboxyla 1.2	te 2
155	A Ag2CO3/TFA-catalyzed intramolecular annulation approach to imidazo[1,2-c][1,3]oxazin-5-one derivatives. Organic and Biomolecular Chemistry, 2022, , .	1.5	2
156	Combined Superbase Ionic Liquid Approach to Separate CO ₂ from Flue Gas. ACS Sustainable Chemistry and Engineering, 2022, 10, 9453-9459.	3.2	2
157	Ionic liquids at interfaces: general discussion. Faraday Discussions, 2018, 206, 549-586.	1.6	0
158	Research papers from the 18 th International Symposium on Solubility Phenomena and Related Equilibrium Processes (ISSP18). Pure and Applied Chemistry, 2019, 91, 1277-1278.	0.9	0
159	A New Research Journal on Thermal Sciences: Thermo. Thermo, 2021, 1, 61-62.	0.6	0
160	Binary Mixtures of Ionic Liquids (IIs) and Aliphatic Nitrile Solvents as Electrolytes for Supercapacitors. , 0, , .		0