
Gao-Wei Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/439627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous-Flow Microreactor-Enhanced Clean NAD ⁺ Regeneration for Biosynthesis of 7-Oxo-lithocholic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 456-463.	3.2	12
2	Multifunctional Biocatalysis: An Unusual Imine Reductase. Engineering Microbiology, 2022, , 100023.	2.2	0
3	Direct reductive amination of ketones with amines by reductive aminases. Green Synthesis and Catalysis, 2021, 2, 345-349.	3.7	12
4	Asymmetric Reductive Amination of Structurally Diverse Ketones with Ammonia Using a Spectrum-Extended Amine Dehydrogenase. ACS Catalysis, 2021, 11, 14274-14283.	5.5	22
5	Coevolution of the Activity and Thermostability of an ϵâ€Keto Ester Reductase for Better Synthesis of an (<i>R</i>)â€Î±â€Lipoic Acid Precursor. ChemBioChem, 2020, 21, 1341-1346.	1.3	13
6	One-pot biocatalytic route from cycloalkanes to α,ï‰â€dicarboxylic acids by designed Escherichia coli consortia. Nature Communications, 2020, 11, 5035.	5.8	60
7	Reductive Amination of Biobased Levulinic Acid to Unnatural Chiral γ-Amino Acid Using an Engineered Amine Dehydrogenase. ACS Sustainable Chemistry and Engineering, 2020, 8, 17054-17061.	3.2	24
8	Rational Engineering of Formate Dehydrogenase Substrate/Cofactor Affinity for Better Performance in NADPH Regeneration. Applied Biochemistry and Biotechnology, 2020, 192, 530-543.	1.4	32
9	Stereocomplementary Synthesis of Pharmaceutically Relevant Chiral 2-Aryl-Substituted Pyrrolidines Using Imine Reductases. Organic Letters, 2020, 22, 3367-3372.	2.4	25
10	Evolution of Glucose Dehydrogenase for Cofactor Regeneration in Bioredox Processes with Denaturing Agents. ChemBioChem, 2020, 21, 2680-2688.	1.3	26
11	Development of an engineered thermostable amine dehydrogenase for the synthesis of structurally diverse chiral amines. Catalysis Science and Technology, 2020, 10, 2353-2358.	2.1	37
12	An Ammonium-Formate-Driven Trienzymatic Cascade for ω-Transaminase-Catalyzed (<i>R</i>)-Selective Amination. Journal of Organic Chemistry, 2019, 84, 14987-14993.	1.7	22
13	Oneâ€Pot Enzyme Cascade for Controlled Synthesis of Furancarboxylic Acids from 5â€Hydroxymethylfurfural by H ₂ O ₂ Internal Recycling. ChemSusChem, 2019, 12, 4764-4768.	3.6	45
14	Myoglobin-Catalyzed Efficient In Situ Regeneration of NAD(P) ⁺ and Their Synthetic Biomimetic for Dehydrogenase-Mediated Oxidations. ACS Catalysis, 2019, 9, 2196-2202.	5.5	21
15	Efficient Synthesis of Methyl 3-Acetoxypropionate by a Newly Identified Baeyer-Villiger Monooxygenase. Applied and Environmental Microbiology, 2019, 85, .	1.4	5
16	Efficient production of succinic acid in engineered Escherichia coli strains controlled by anaerobically-induced nirB promoter using sweet potato waste hydrolysate. Journal of Environmental Management, 2019, 237, 147-154.	3.8	21
17	Enantioselective Synthesis of Chiral Vicinal Amino Alcohols Using Amine Dehydrogenases. ACS Catalysis, 2019, 9, 11813-11818.	5.5	54
18	Development of an Engineered Ketoreductase with Simultaneously Improved Thermostability and Activity for Making a Bulky Atorvastatin Precursor. ACS Catalysis, 2019, 9, 147-153.	5.5	93

GAO-WEI ZHENG

#	Article	IF	CITATIONS
19	Efficient production of red Monascus pigments with single non-natural amine residue by in situ chemical modification. World Journal of Microbiology and Biotechnology, 2019, 35, 13.	1.7	8
20	Bioamination of alkane with ammonium by an artificially designed multienzyme cascade. Metabolic Engineering, 2018, 47, 184-189.	3.6	35
21	Reshaping the Active Pocket of Amine Dehydrogenases for Asymmetric Synthesis of Bulky Aliphatic Amines. ACS Catalysis, 2018, 8, 2622-2628.	5.5	100
22	Reductive amination of ketones with ammonium catalyzed by a newly identified Brevibacterium epidermidis strain for the synthesis of (S)-chiral amines. Chinese Journal of Catalysis, 2018, 39, 1625-1632.	6.9	5
23	Direct Access to Medium hain α,ï‰â€Dicarboxylic Acids by Using a Baeyer–Villiger Monooxygenase of Abnormal Regioselectivity. ChemBioChem, 2018, 19, 2049-2054.	1.3	13
24	Identification of an Imine Reductase for Asymmetric Reduction of Bulky Dihydroisoquinolines. Organic Letters, 2017, 19, 3151-3154.	2.4	56
25	Highly efficient bioreduction of 2-hydroxyacetophenone to (S)- and (R)-1-phenyl-1,2-ethanediol by two substrate tolerance carbonyl reductases with cofactor regeneration. Journal of Biotechnology, 2017, 243, 1-9.	1.9	31
26	Recent progress on deep eutectic solvents in biocatalysis. Bioresources and Bioprocessing, 2017, 4, 34.	2.0	262
27	Preparation of Structurally Diverse Chiral Alcohols by Engineering Ketoreductase <i>Cg</i> KR1. ACS Catalysis, 2017, 7, 7174-7181.	5.5	74
28	Identification of a Robust Carbonyl Reductase for Diastereoselectively Building <i>syn</i> -3,5-Dihydroxy Hexanoate: a Bulky Side Chain of Atorvastatin. Organic Process Research and Development, 2017, 21, 1349-1354.	1.3	24
29	Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols. Journal of Biotechnology, 2016, 230, 54-62.	1.9	29
30	Green access to chiral Vince lactam in a buffer-free aqueous system using a newly identified substrate-tolerant (â^)-γ-lactamase. Catalysis Science and Technology, 2016, 6, 6305-6310.	2.1	12
31	A Novel (<i>R</i>)â€Imine Reductase from <i>Paenibacillus lactis</i> for Asymmetric Reduction of 3 <i>H</i> â€Indoles. ChemCatChem, 2016, 8, 724-727.	1.8	30
32	Whole-Cell Biocatalytic Processes with Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2016, 4, 371-386.	3.2	68
33	Asymmetric Amination of Secondary Alcohols by using a Redoxâ€Neutral Twoâ€Enzyme Cascade. ChemCatChem, 2015, 7, 3838-3841.	1.8	108
34	Efficient Synthesis of Chiral Indolines using an Imine Reductase from <i>Paenibacillus lactis</i> . Advanced Synthesis and Catalysis, 2015, 357, 1692-1696.	2.1	65
35	Identification of an εâ€Keto Ester Reductase for the Efficient Synthesis of an (<i>R</i>)â€Î±â€Łipoic Acid Precursor. Advanced Synthesis and Catalysis, 2015, 357, 1697-1702.	2.1	23
36	Cloning and Characterization of an Enantioselective l-Menthyl Benzoate Hydrolase from Acinetobacter sp. ECU2040. Applied Biochemistry and Biotechnology, 2015, 176, 1102-1113.	1.4	4

GAO-WEI ZHENG

#	Article	lF	CITATIONS
37	Improved biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by adding l-glutamine plus glycine instead of NAD+ in β-cyclodextrin–water system. Bioresource Technology, 2015, 182, 98-102.	4.8	19
38	Efficient production of l-menthol in a two-phase system with SDS using an immobilized Bacillus subtilis esterase. Bioresources and Bioprocessing, 2014, 1, .	2.0	14
39	Efficient synthesis of an ε-hydroxy ester in a space–time yield of 1580gLâ^'1dâ^'1 by a newly identified reductase RhCR. Tetrahedron: Asymmetry, 2014, 25, 1501-1504.	1.8	11
40	Stepwise and combinatorial optimization of enantioselectivity for the asymmetric hydrolysis of 1-(3',4'-methylenedioxyphenyl)ethyl acetate under use of a cold-adapted Bacillus amyloliquefaciens esterase. Biotechnology and Bioprocess Engineering, 2014, 19, 442-448.	1.4	7
41	Enzymatic resolution of a chiral chlorohydrin precursor for (R)-α-lipoic acid synthesis via lipase catalyzed enantioselective transacylation with vinyl acetate. Journal of Molecular Catalysis B: Enzymatic, 2014, 99, 102-107.	1.8	10
42	Optimization and Scale-up of a Bioreduction Process for Preparation of Ethyl (<i>S</i>)-4-Chloro-3-hydroxybutanoate. Organic Process Research and Development, 2014, 18, 739-743.	1.3	23
43	Enantioselective Hydrolysis of dl-Menthyl Benzoate by Cell-Free Extract of Newly Isolated Acinetobacter sp. ECU2040. Applied Biochemistry and Biotechnology, 2013, 170, 1974-1981.	1.4	8
44	Multi-substrate fingerprinting of esterolytic enzymes with a group of acetylated alcohols and statistic analysis of substrate spectrum. Journal of Molecular Catalysis B: Enzymatic, 2013, 89, 41-47.	1.8	9
45	Separation of enantiopure m-substituted 1-phenylethanols in high space-time yield using Bacillus subtilis esterase. RSC Advances, 2013, 3, 20446.	1.7	5
46	Efficient Synthesis of a Chiral Precursor for Angiotensin-Converting Enzyme (ACE) Inhibitors in High Space-Time Yield by a New Reductase without External Cofactors. Organic Letters, 2012, 14, 1982-1985.	2.4	68
47	Bioreduction of methyl o-chlorobenzoylformate at 500gLâ^'1 without external cofactors for efficient production of enantiopure clopidogrel intermediate. Tetrahedron Letters, 2012, 53, 4715-4717.	0.7	27
48	Stereospecific Reduction of Methyl <i>o</i> â€Chlorobenzoylformate at 300â€gâ <l<sup>â^'1 without Additional Cofactor using a Carbonyl Reductase Mined from <i>Candida glabrata</i>. Advanced Synthesis and Catalysis, 2012, 354, 1765-1772.</l<sup>	2.1	59
49	Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata. Applied Microbiology and Biotechnology, 2012, 95, 91-99.	1.7	56
50	New opportunities for biocatalysis: driving the synthesis of chiral chemicals. Current Opinion in Biotechnology, 2011, 22, 784-792.	3.3	153
51	An efficient bioprocess for enzymatic production of l-menthol with high ratio of substrate to catalyst using whole cells of recombinant E. coli. Journal of Biotechnology, 2010, 150, 108-114.	1.9	34
52	Enzymatic Production of <i>l</i> â€Menthol by a High Substrate Concentration Tolerable Esterase from Newly Isolated <i>Bacillus subtilis</i> ECU0554. Advanced Synthesis and Catalysis, 2009, 351, 405-414.	2.1	53