## Alexander G Dvoretsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4396124/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                     | IF                | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 1  | Summer-fall macrozooplankton assemblages in a large Arctic estuarine zone (south-eastern Barents) Tj ETQq1                                                                  | 1 0.784314<br>2.5 | 1 rgBT /Over |
| 2  | Renewal of the amateur red king crab fishery in Russian waters of the Barents Sea: Potential benefits<br>and costs. Marine Policy, 2022, 136, 104916.                       | 3.2               | 12           |
| 3  | Coastal Mesozooplankton Assemblages during Spring Bloom in the Eastern Barents Sea. Biology, 2022, 11, 204.                                                                 | 2.8               | 11           |
| 4  | Thyroid Hormones in Hemolymph of Red King Crabs from the Barents Sea. Animals, 2022, 12, 379.                                                                               | 2.3               | 9            |
| 5  | Environmental Drivers of an Intertidal Bryozoan Community in the Barents Sea: A Case Study. Animals, 2022, 12, 552.                                                         | 2.3               | 16           |
| 6  | Fatty acids in the circulatory system of an invasive king crab from the Barents Sea. Journal of Food<br>Composition and Analysis, 2022, 110, 104528.                        | 3.9               | 10           |
| 7  | Epibiotic Communities of Common Crab Species in the Coastal Barents Sea: Biodiversity and Infestation<br>Patterns. Diversity, 2022, 14, 6.                                  | 1.7               | 22           |
| 8  | Biological Aspects, Fisheries, and Aquaculture of Yesso Scallops in Russian Waters of the Sea of Japan.<br>Diversity, 2022, 14, 399.                                        | 1.7               | 2            |
| 9  | Fatty Acid Content of Four Salmonid Fish Consumed by Indigenous Peoples from the Yamal-Nenets<br>Autonomous Okrug (Northwestern Siberia, Russia). Animals, 2022, 12, 1643.  | 2.3               | 2            |
| 10 | Prey Selectivity in Juvenile Red King Crabs from the Coastal Barents Sea. Diversity, 2022, 14, 568.                                                                         | 1.7               | 10           |
| 11 | New Echinoderm-Crab Epibiotic Associations from the Coastal Barents Sea. Animals, 2021, 11, 917.                                                                            | 2.3               | 20           |
| 12 | Winter Zooplankton in a Small Arctic Lake: Abundance and Vertical Distribution. Water (Switzerland), 2021, 13, 912.                                                         | 2.7               | 6            |
| 13 | Fatty acid composition of the Barents Sea red king crab (Paralithodes camtschaticus) leg meat. Journal of Food Composition and Analysis, 2021, 98, 103826.                  | 3.9               | 24           |
| 14 | Sex Hormones in Hemolymph of Red King Crabs from the Barents Sea. Animals, 2021, 11, 2149.                                                                                  | 2.3               | 15           |
| 15 | Cucumaria in Russian Waters of the Barents Sea: Biological Aspects and Aquaculture Potential.<br>Frontiers in Marine Science, 2021, 8, .                                    | 2.5               | 20           |
| 16 | Arctic marine mesozooplankton at the beginning of the polar night: a case study for southern and south-western Svalbard waters. Polar Biology, 2020, 43, 71-79.             | 1.2               | 7            |
| 17 | Effects of Environmental Factors on the Abundance, Biomass, and Individual Weight of Juvenile Red<br>King Crabs in the Barents Sea. Frontiers in Marine Science, 2020, 7, . | 2.5               | 25           |
| 18 | Summer variability of reproductive pattern in the marine cladoceran Evadne nordmanni in Arctic waters. Journal of Sea Research, 2020, 166, 101969.                          | 1.6               | 2            |

Alexander G Dvoretsky

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Aquaculture of green sea urchin in the Barents Sea: a brief review of Russian studies. Reviews in<br>Aquaculture, 2020, 12, 2080-2090.                                                             | 9.0 | 22        |
| 20 | Zooplankton productivity in the coastal area of the southern Barents Sea in spring. Marine Biological<br>Journal, 2020, 5, 3-14.                                                                   | 0.4 | 1         |
| 21 | Summer macrozooplankton assemblages of Arctic shelf: A latitudinal study. Continental Shelf<br>Research, 2019, 188, 103967.                                                                        | 1.8 | 12        |
| 22 | Climate change opens new frontiers for marine species in the Arctic: Current trends and future invasion risks. Global Change Biology, 2019, 25, 25-38.                                             | 9.5 | 135       |
| 23 | Red king crab (Paralithodes camtschaticus) fisheries in Russian waters: historical review and present<br>status. Reviews in Fish Biology and Fisheries, 2018, 28, 331-353.                         | 4.9 | 37        |
| 24 | Mesozooplankton in the Kola Transect (Barents Sea): Autumn and winter structure. Journal of Sea<br>Research, 2018, 142, 125-131.                                                                   | 1.6 | 12        |
| 25 | Macrozooplankton of the Arctic – The Kara Sea in relation to environmental conditions. Estuarine,<br>Coastal and Shelf Science, 2017, 188, 38-55.                                                  | 2.1 | 12        |
| 26 | Inter-annual dynamics of the Barents Sea red king crab (Paralithodes camtschaticus) stock indices in relation to environmental factors. Polar Science, 2016, 10, 541-552.                          | 1.2 | 31        |
| 27 | Regional differences of mesozooplankton communities in the Kara Sea. Continental Shelf Research, 2015, 105, 26-41.                                                                                 | 1.8 | 17        |
| 28 | Early winter mesozooplankton of the coastal south-eastern Barents Sea. Estuarine, Coastal and Shelf<br>Science, 2015, 152, 116-123.                                                                | 2.1 | 11        |
| 29 | Commercial fish and shellfish in the Barents Sea: Have introduced crab species affected the population trajectories of commercial fish?. Reviews in Fish Biology and Fisheries, 2015, 25, 297-322. | 4.9 | 59        |
| 30 | Structure of mesozooplankton community in the Barents Sea and adjacent waters in August 2009.<br>Journal of Natural History, 2013, 47, 2095-2114.                                                  | 0.5 | 18        |
| 31 | Copepods associated with the red king crab Paralithodes camtschaticus (Tilesius, 1815) in the Barents<br>Sea. Zoological Studies, 2013, 52, .                                                      | 0.3 | 10        |
| 32 | Epiplankton in the Barents sea: Summer variations of mesozooplankton biomass, community structure and diversity. Continental Shelf Research, 2013, 52, 1-11.                                       | 1.8 | 35        |
| 33 | Population dynamics of the invasive lithodid crab, Paralithodes camtschaticus, in a typical bay of the<br>Barents Sea. ICES Journal of Marine Science, 2013, 70, 1255-1262.                        | 2.5 | 27        |
| 34 | Does spine removal affect molting process in the king red crab (Paralithodes camtschaticus) in the<br>Barents Sea?. Aquaculture, 2012, 326-329, 173-177.                                           | 3.5 | 12        |
| 35 | Estimated copepod production rate and structure of mesozooplankton communities in the coastal<br>Barents Sea during summer–autumn 2007. Polar Biology, 2012, 35, 1321-1342.                        | 1.2 | 21        |
| 36 | Epibionts of the great spider crab, Hyas araneus (Linnaeus, 1758), in the Barents Sea. Polar Biology, 2012, 35, 625-631.                                                                           | 1.2 | 13        |

Alexander G Dvoretsky

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Population biology of Ischyrocerus commensalis, a crab-associated amphipod, in the Southern Barents<br>Sea: a multi-annual summer study. Marine Ecology, 2011, 32, 498-508.                                  | 1.1 | 13        |
| 38 | Mesozooplankton structure in the northern White Sea in July 2008. Polar Biology, 2011, 34, 469-474.                                                                                                          | 1.2 | 6         |
| 39 | Copepod communities off Franz Josef Land (northern Barents Sea) in late summer of 2006 and 2007.<br>Polar Biology, 2011, 34, 1231-1238.                                                                      | 1.2 | 22        |
| 40 | Checklist of fauna found in zooplankton samples from the Barents Sea. Polar Biology, 2010, 33, 991-1005.                                                                                                     | 1.2 | 24        |
| 41 | Hemolymph molting hormone concentrations in red king crabs from the Barents Sea. Polar Biology, 2010, 33, 1293-1298.                                                                                         | 1.2 | 16        |
| 42 | Epifauna associated with an introduced crab in the Barents Sea: a 5-year study. ICES Journal of Marine<br>Science, 2010, 67, 204-214.                                                                        | 2.5 | 29        |
| 43 | The amphipod Ischyrocerus commensalis on the eggs of the red king crab Paralithodes camtschaticus:<br>Egg predator or scavenger?. Aquaculture, 2010, 298, 185-189.                                           | 3.5 | 12        |
| 44 | Limb autotomy patterns in Paralithodes camtschaticus (Tilesius, 1815), an invasive crab, in the coastal<br>Barents Sea. Journal of Experimental Marine Biology and Ecology, 2009, 377, 20-27.                | 1.5 | 33        |
| 45 | Distribution of amphipods Ischyrocerus on the red king crab, Paralithodes camtschaticus: Possible<br>interactions with the host in the Barents Sea. Estuarine, Coastal and Shelf Science, 2009, 82, 390-396. | 2.1 | 20        |
| 46 | Summer mesozooplankton structure in the Pechora Sea (south-eastern Barents Sea). Estuarine,<br>Coastal and Shelf Science, 2009, 84, 11-20.                                                                   | 2.1 | 26        |
| 47 | Some aspects of the biology of the amphipods Ischyrocerus anguipes associated with the red king crab, Paralithodes camtschaticus, in the Barents Sea. Polar Biology, 2009, 32, 463-469.                      | 1.2 | 22        |
| 48 | Summer mesozooplankton distribution near Novaya Zemlya (eastern Barents Sea). Polar Biology, 2009,<br>32, 719-731.                                                                                           | 1.2 | 31        |
| 49 | Fouling community of the red king crab, Paralithodes camtschaticus (Tilesius 1815), in a subarctic fjord of the Barents sea. Polar Biology, 2009, 32, 1047-1054.                                             | 1.2 | 29        |
| 50 | Distribution of the under-ice mesozooplankton in the Kara Sea in February 2002. Polar Biology, 2009, 32, 1227-1231.                                                                                          | 1.2 | 7         |