
Carlos Conde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4396071/publications.pdf Version: 2024-02-01

CARLOS CONDE

#	Article	IF	CITATIONS
1	Physiological, biochemical and molecular changes occurring during olive development and ripening. Journal of Plant Physiology, 2008, 165, 1545-1562.	1.6	223
2	Pathways of Glucose Regulation of Monosaccharide Transport in Grape Cells. Plant Physiology, 2006, 141, 1563-1577.	2.3	95
3	Mannitol Transport and Mannitol Dehydrogenase Activities are Coordinated in Olea europaea Under Salt and Osmotic Stresses. Plant and Cell Physiology, 2011, 52, 1766-1775.	1.5	85
4	Utilization and Transport of Mannitol in Olea europaea and Implications for Salt Stress Tolerance. Plant and Cell Physiology, 2006, 48, 42-53.	1.5	79
5	Phosphatases in Mitosis: Roles and Regulation. Biomolecules, 2019, 9, 55.	1.8	64
6	Protein Phosphatase 1 inactivates Mps1 to ensure efficient Spindle Assembly Checkpoint silencing. ELife, 2017, 6, .	2.8	46
7	Drosophila Polo regulates the spindle assembly checkpoint through Mps1-dependent BubR1 phosphorylation. EMBO Journal, 2013, 32, 1761-1777.	3.5	44
8	VvSWEET7 Is a Mono- and Disaccharide Transporter Up-Regulated in Response to Botrytis cinerea Infection in Grape Berries. Frontiers in Plant Science, 2019, 10, 1753.	1.7	41
9	The Grapevine Uncharacterized Intrinsic Protein 1 (VvXIP1) Is Regulated by Drought Stress and Transports Glycerol, Hydrogen Peroxide, Heavy Metals but Not Water. PLoS ONE, 2016, 11, e0160976.	1.1	37
10	OeMST2 Encodes a Monosaccharide Transporter Expressed throughout Olive Fruit Maturation. Plant and Cell Physiology, 2007, 48, 1299-1308.	1.5	27
11	An Hg-sensitive channel mediates the diffusional component of glucose transport in olive cells. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2801-2811.	1.4	25
12	The grapevine NIP2;1 aquaporin is a silicon channel. Journal of Experimental Botany, 2020, 71, 6789-6798.	2.4	24
13	The Non-host Pathogen Botrytis cinerea Enhances Glucose Transport in Pinus pinaster Suspension-cultured Cells. Plant and Cell Physiology, 2006, 47, 290-298.	1.5	21
14	Sugar Transport & Sugar Sensing In Grape. , 2009, , 105-139.		21
15	POLO ensures chromosome bi-orientation by preventing and correcting erroneous chromosome–spindle attachments. Journal of Cell Science, 2012, 125, 576-583.	1.2	18
16	Polo regulates Spindly to prevent premature stabilization of kinetochore–microtubule attachments. EMBO Journal, 2020, 39, e100789.	3.5	16
17	The grapevine VvCAX3 is a cation/H+ exchanger involved in vacuolar Ca2+ homeostasis. Planta, 2017, 246, 1083-1096.	1.6	15
18	VvERD6l13 is a grapevine sucrose transporter highly up-regulated in response to infection by Botrytis cinerea and Erysiphe necator. Plant Physiology and Biochemistry, 2020, 154, 508-516.	2.8	13

CARLOS CONDE

#	Article	IF	Citations
19	Identification and functional characterization of grapevine transporters that mediate glucose-6-phosphate uptake into plastids. Planta, 2015, 242, 909-920.	1.6	12
20	Sweet Cherry (Prunus avium L.) PaPIP1;4 Is a Functional Aquaporin Upregulated by Pre-Harvest Calcium Treatments that Prevent Cracking. International Journal of Molecular Sciences, 2020, 21, 3017.	1.8	12
21	Mps1-mediated release of Mad1 from nuclear pores ensures the fidelity of chromosome segregation. Journal of Cell Biology, 2020, 219, .	2.3	11
22	The Role of Mitotic Kinases and the RZZ Complex in Kinetochore-Microtubule Attachments: Doing the Right Link. Frontiers in Cell and Developmental Biology, 2022, 10, 787294.	1.8	7
23	Cell Cycle Kinase Polo Is Controlled by a Widespread 3′ Untranslated Region Regulatory Sequence in <i>Drosophila melanogaster</i> . Molecular and Cellular Biology, 2019, 39, .	1.1	6
24	α-Fodrin is required for the organization of functional microtubules during mitosis. Cell Cycle, 2019, 18, 2713-2726.	1.3	5
25	Spindle checkpoint: trapped by the corona, cyclin B1 goes <scp>MAD</scp> . EMBO Journal, 2020, 39, e105279.	3.5	5
26	All together now. Fly, 2013, 7, 224-228.	0.9	4
27	RZZ-SPINDLY-DYNEIN: you got to keep â€~em separated. Cell Cycle, 2020, 19, 1716-1726.	1.3	4
28	Chromosomal localisation of five genes in Perkinsus olseni (Phylum Perkinsozoa). European Journal of Protistology, 2012, 48, 194-198.	0.5	3
29	From the Nuclear Pore to the Fibrous Corona: A MAD Journey to Preserve Genome Stability. BioEssays, 2020, 42, 2000132.	1.2	Ο