
Hassen M Yesuf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4395634/publications.pdf Version: 2024-02-01

HASSEN M YESHE

#	Article	IF	CITATIONS
1	Fast, Slow, Early, Late: Quenching Massive Galaxies at z â^¼ 0.8. Astrophysical Journal, 2022, 926, 134.	4.5	70
2	The Baltimore Oriole's Nest: Cool Winds from the Inner and Outer Parts of a Star-forming Galaxy at z = 1.3. Astrophysical Journal, 2022, 930, 146.	4.5	7
3	The Sizes of Quasar Host Galaxies in the Hyper Suprime-Cam Subaru Strategic Program. Astrophysical Journal, 2021, 918, 22.	4.5	36
4	Synchronized Coevolution between Supermassive Black Holes and Galaxies over the Last Seven Billion Years as Revealed by Hyper Suprime-Cam. Astrophysical Journal, 2021, 922, 142.	4.5	17
5	What is Important? Morphological Asymmetries are Useful Predictors of Star Formation Rates of Star-forming Galaxies in SDSS Stripe 82. Astrophysical Journal, 2021, 923, 205.	4.5	8
6	Quenching as a Contest between Galaxy Halos and Their Central Black Holes. Astrophysical Journal, 2020, 897, 102.	4.5	66
7	Structural and stellar-population properties versus bulge types in Sloan Digital Sky Survey central galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1686-1707.	4.4	23
8	The Activation of Galactic Nuclei and Their Accretion Rates Are Linked to the Star Formation Rates and Bulge-types of Their Host Galaxies. Astrophysical Journal, 2020, 889, 14.	4.5	14
9	Gas Content Regulates the Life Cycle of Star Formation and Black Hole Accretion in Galaxies. Astrophysical Journal, 2020, 901, 42.	4.5	33
10	Some Die Filthy Rich: The Diverse Molecular Gas Contents of Post-starburst Galaxies Probed by Dust Absorption. Astrophysical Journal, 2020, 900, 107.	4.5	14
11	Dirt-cheap Gas Scaling Relations: Using Dust Absorption, Metallicity, and Galaxy Size to Predict Gas Masses for Large Samples of Galaxies. Astrophysical Journal, 2019, 884, 177.	4.5	29
12	X-shaped Radio Galaxies: Optical Properties, Large-scale Environment, and Relationship to Radio Structure. Astrophysical Journal, 2019, 887, 266.	4.5	15
13	Dirt-cheap gas scaling relations: Using dust attenuation and galaxy radius to predict gas masses for large samples of AGNs. Proceedings of the International Astronomical Union, 2019, 15, 173-173.	0.0	0
14	The Isophotal Structure of Star-forming Galaxies at 0.5 < z < 1.8 in CANDELS: Implications for the Evolution of Galaxy Structure. Astrophysical Journal, 2018, 854, 70.	4.5	4
15	On the Transition of the Galaxy Quenching Mode at 0.5Â<ÂzÂ<Â1 in CANDELS. Astrophysical Journal, 2018, 860, 60.	4.5	13
16	No Evidence for Feedback: Unexceptional Low-ionization Winds in Host Galaxies of Low Luminosity Active Galactic Nuclei at Redshift z â^¼ 1. Astrophysical Journal, 2017, 841, 83.	4.5	11
17	Molecular gas during the post-starburst phase: low gas fractions in green-valley Seyfert post-starburst galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3015-3030.	4.4	17
18	The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2054-2084.	4.4	63

#	Article	IF	CITATIONS
19	The Origins of UV–optical Color Gradients in Star-forming Galaxies at zÂâ^¼Â2: Predominant Dust Gradients but Negligible sSFR Gradients. Astrophysical Journal Letters, 2017, 844, L2.	8.3	20
20	STELLAR MASS–GAS-PHASE METALLICITY RELATION AT 0.5 â‰ÂzÂ≤0.7: A POWER LAW WITH INCREASING S TOWARD THE LOW-MASS REGIME. Astrophysical Journal, 2016, 822, 103.	SCATTER	29
21	THE BURSTY STAR FORMATION HISTORIES OF LOW-MASS GALAXIES AT 0.4 < z < 1 REVEALED BY STAR FORMATION RATES MEASURED FROM HÎ2 AND FUV. Astrophysical Journal, 2016, 833, 37.	4.5	69
22	THE UV–OPTICAL COLOR GRADIENTS IN STAR-FORMING GALAXIES AT 0.5 < z < 1.5: ORIGINS AND LINK TO GALAXY ASSEMBLY. Astrophysical Journal Letters, 2016, 822, L25.	8.3	25
23	FROM STARBURST TO QUIESCENCE: TESTING ACTIVE GALACTIC NUCLEUS FEEDBACK IN RAPIDLY QUENCHING POST-STARBURST GALAXIES. Astrophysical Journal, 2014, 792, 84.	4.5	94