Mark D Greenhalgh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4395560/publications.pdf

Version: 2024-02-01

304743 1,849 39 22 citations papers

39 h-index g-index 51 51 51 1683 docs citations times ranked citing authors all docs

302126

#	Article	IF	CITATIONS
1	Scope, Limitations and Mechanistic Analysis of the HyperBTM atalyzed Acylative Kinetic Resolution of Tertiary Heterocyclic Alcohols**. European Journal of Organic Chemistry, 2022, 2022, e202101111.	2.4	4
2	Horeau amplification in the sequential acylative kinetic resolution of $(\hat{A}\pm)$ -1,2-diols and $(\hat{A}\pm)$ -1,3-diols in flow. Organic and Biomolecular Chemistry, 2021, 19, 3620-3627.	2.8	9
3	Isothiourea-Catalyzed Enantioselective $\hat{I}\pm$ -Alkylation of Esters via 1,6-Conjugate Addition to para-Quinone Methides. Molecules, 2021, 26, 6333.	3.8	4
4	Unanticipated Silyl Transfer in Enantioselective $\hat{l}\pm,\hat{l}^2$ -Unsaturated Acyl Ammonium Catalysis Using Silyl Nitronates. Organic Letters, 2020, 22, 335-339.	4.6	22
5	Isothioureaâ€Catalyzed Acylative Kinetic Resolution of Tertiary αâ€Hydroxy Esters. Angewandte Chemie - International Edition, 2020, 59, 16572-16578.	13.8	37
6	TMEDA in Ironâ€Catalyzed Hydromagnesiation: Formation of Iron(II)â€Alkyl Species for Controlled Reduction to Alkeneâ€Stabilized Iron(0). Angewandte Chemie - International Edition, 2020, 59, 17070-17076.	13.8	14
7	Isothioureaâ€Catalyzed Synthesis of Pyrrole―and Indoleâ€Functionalized Tetrasubstituted Pyridines. ChemCatChem, 2020, 12, 4522-4525.	3.7	3
8	Tandem sequential catalytic enantioselective synthesis of highly-functionalised tetrahydroindolizine derivatives. Chemical Science, 2020, 11, 3885-3892.	7.4	24
9	Isothioureaâ€Catalyzed Acylative Kinetic Resolution of Tertiary αâ€Hydroxy Esters. Angewandte Chemie, 2020, 132, 16715.	2.0	9
10	TMEDA in Ironâ€Catalyzed Hydromagnesiation: Formation of Iron(II)â€Alkyl Species for Controlled Reduction to Alkeneâ€Stabilized Iron(0). Angewandte Chemie, 2020, 132, 17218-17224.	2.0	4
11	NHC-catalyzed enantioselective synthesis of \hat{l}^2 -trifluoromethyl- \hat{l}^2 -hydroxyamides. Beilstein Journal of Organic Chemistry, 2020, 16, 1572-1578.	2.2	3
12	Isothiourea-Catalysed Sequential Kinetic Resolution of Acyclic (±)-1,2-Diols. Synlett, 2019, 30, 1555-1560.	1.8	15
13	Mechanism of the Bis(imino)pyridine-Iron-Catalyzed Hydromagnesiation of Styrene Derivatives. Journal of the American Chemical Society, 2019, 141, 10099-10108.	13.7	30
14	Catalytic enantioselective synthesis of perfluoroalkyl-substituted \hat{l}^2 -lactones <i>via</i> a concerted asynchronous [2 + 2] cycloaddition: a synthetic and computational study. Chemical Science, 2019, 10, 6162-6173.	7.4	40
15	Synthesis of Fused Indolineâ€Cyclobutanone Derivatives via an Intramolecular [2+2] Cycloaddition. European Journal of Organic Chemistry, 2019, 2019, 5169-5174.	2.4	5
16	Chiral Au ^I ―and Au ^{III} ―sothiourea Complexes: Synthesis, Characterization and Application. Chemistry - A European Journal, 2019, 25, 1064-1075.	3.3	11
17	Isothiourea atalysed Regioselective Acylative Kinetic Resolution of Axially Chiral Biaryl Diols. Chemistry - A European Journal, 2019, 25, 2816-2823.	3.3	33
18	Acylative Kinetic Resolution of Alcohols Using a Recyclable Polymer-Supported Isothiourea Catalyst in Batch and Flow. ACS Catalysis, 2018, 8, 1067-1075.	11.2	38

#	Article	IF	CITATIONS
19	A C=Oâ‹â‹lsothiouronium Interaction Dictates Enantiodiscrimination in Acylative Kinetic Resolutions of Tertiary Heterocyclic Alcohols. Angewandte Chemie - International Edition, 2018, 57, 3200-3206.	13.8	102
20	A C=Oâ«â«lsothiouronium Interaction Dictates Enantiodiscrimination in Acylative Kinetic Resolutions of Tertiary Heterocyclic Alcohols. Angewandte Chemie, 2018, 130, 3254-3260.	2.0	43
21	Multiple roles of aryloxide leaving groups in enantioselective annulations employing \hat{l}_{\pm},\hat{l}^2 -unsaturated acyl ammonium catalysis. Chemical Science, 2018, 9, 4909-4918.	7.4	34
22	Best practice considerations for using the selectivity factor, s, as a metric for the efficiency of kinetic resolutions. Tetrahedron, 2018, 74, 5554-5560.	1.9	55
23	Evaluating polymer-supported isothiourea catalysis in industrially-preferable solvents for the acylative kinetic resolution of secondary and tertiary heterocyclic alcohols in batch and flow. Green Chemistry, 2018, 20, 4537-4546.	9.0	26
24	Aryloxideâ€Facilitated Catalyst Turnover in Enantioselective α,βâ€Unsaturated Acyl Ammonium Catalysis. Angewandte Chemie, 2017, 129, 12450-12455.	2.0	15
25	Aryloxideâ€Facilitated Catalyst Turnover in Enantioselective α,βâ€Unsaturated Acyl Ammonium Catalysis. Angewandte Chemie - International Edition, 2017, 56, 12282-12287.	13.8	48
26	Enantioselective N-heterocyclic carbene catalyzed formal [3+2] cycloaddition using α-aroyloxyaldehydes and oxaziridines. Tetrahedron: Asymmetry, 2017, 28, 125-134.	1.8	13
27	Enantioselective synthesis of 2,3-disubstituted trans-2,3-dihydrobenzofurans using a BrÃˌnsted base/thiourea bifunctional catalyst. Organic and Biomolecular Chemistry, 2016, 14, 7268-7274.	2.8	25
28	Non-bonding 1,5-Sâ <o 2016,="" 6919-6927.<="" 7,="" and="" annulations="" benzazoles.="" chemical="" chemo-="" enantioselectivity="" govern="" in="" interactions="" isothiourea-catalyzed="" of="" science,="" td=""><td>7.4</td><td>125</td></o>	7.4	125
29	Subtle temperature-induced changes in small molecule conformer dynamics – observed and quantified by NOE spectroscopy. Chemical Communications, 2016, 52, 2920-2923.	4.1	18
30	Iron-Catalysed Hydromagnesiation of Styrene Derivatives. Springer Theses, 2016, , 115-174.	0.1	0
31	Ironâ€Catalysed Hydrofunctionalisation of Alkenes and Alkynes. ChemCatChem, 2015, 7, 190-222.	3.7	302
32	Iron atalysed Chemoâ€, Regioâ€, and Stereoselective Hydrosilylation of Alkenes and Alkynes using a Bench‧table Iron(II) Pre atalyst. Advanced Synthesis and Catalysis, 2014, 356, 584-590.	4.3	158
33	Broad Scope Hydrofunctionalization of Styrene Derivatives Using Iron-Catalyzed Hydromagnesiation. Organic Letters, 2014, 16, 5964-5967.	4.6	38
34	Iron-Catalyzed Hydromagnesiation: Synthesis and Characterization of Benzylic Grignard Reagent Intermediate and Application in the Synthesis of Ibuprofen. Organometallics, 2014, 33, 5811-5819.	2.3	37
35	Ironâ€Catalysed Reductive Crossâ€Coupling of Alkenes. ChemCatChem, 2014, 6, 1520-1522.	3.7	13
36	Chemo-, regio-, and stereoselective iron-catalysed hydroboration of alkenes and alkynes. Chemical Communications, 2013, 49, 11230.	4.1	174

#	Article	IF	CITATIONS
37	Iron-Catalyzed Hydromagnesiation of Olefins. Synlett, 2013, 24, 531-534.	1.8	27
38	Iron-catalysed, hydride-mediated reductive cross-coupling of vinyl halides and Grignard reagents. Chemical Communications, 2012, 48, 1580-1582.	4.1	32
39	Iron-Catalyzed, Highly Regioselective Synthesis of α-Aryl Carboxylic Acids from Styrene Derivatives and CO ₂ . Journal of the American Chemical Society, 2012, 134, 11900-11903.	13.7	253