Arik Kar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4395170/publications.pdf Version: 2024-02-01

	331670	414414
1,616	21	32
citations	h-index	g-index
35	35	2214
docs citations	times ranked	citing authors
	citations 35	1,61621citationsh-index3535

Δριν Κλρ

#	Article	IF	CITATIONS
1	Visible light photocatalysts from low-grade iron ore: the environmentally benign production of magnetite/carbon (Fe3O4/C) nanocomposites. Environmental Science and Pollution Research, 2022, 29, 6698-6709.	5.3	5
2	Reducing indium dependence by heterostructure design in SnO2–In2S3 nanocomposites. Materials Chemistry and Physics, 2022, 277, 125463.	4.0	3
3	A dual-channel chemodosimetric sensor for discrimination between hypochlorite and nerve-agent mimic DCP: application on human breast cancer cells. Organic and Biomolecular Chemistry, 2022, 20, 4803-4814.	2.8	7
4	A one-pot fluorogenic cascade cyclization reaction <i>via</i> BF ₃ -sensing. Analyst, The, 2021, 146, 2998-3003.	3.5	7
5	A ratiometric triazine-based colorimetric and fluorometric sensor for the recognition of Zn ²⁺ ions and its application in human lung cancer cells. Analytical Methods, 2021, 13, 3922-3929.	2.7	12
6	A comparative structural and photocatalytic study on SnO2 nanoparticles fabricated in batch reactor and microreactor. Journal of Environmental Chemical Engineering, 2020, 8, 104604.	6.7	22
7	Modulating the properties of SnO ₂ nanocrystals: morphological effects on structural, photoluminescence, photocatalytic, electrochemical and gas sensing properties. Journal of Materials Chemistry C, 2020, 8, 4604-4635.	5.5	88
8	Morphological effects on the photocatalytic properties of SnO2 nanostructures. Journal of Alloys and Compounds, 2019, 810, 151718.	5.5	57
9	Recent Advances on the Optical Properties of Eu ³⁺ Ion in Nano-Systems. Journal of Nanoscience and Nanotechnology, 2018, 18, 8047-8069.	0.9	9
10	Targeting low-cost type-II heterostructures: Synthesis, structure and photoreactivity. Journal of Alloys and Compounds, 2017, 698, 944-956.	5.5	20
11	Facile synthesis of SnO ₂ –PbS nanocomposites with controlled structure for applications in photocatalysis. Nanoscale, 2016, 8, 2727-2739.	5.6	60
12	Influence of Size and Shape on the Photocatalytic Properties of SnO ₂ Nanocrystals. ChemPhysChem, 2015, 16, 1017-1025.	2.1	64
13	Lanthanideâ€Doped Nanocrystals: Strategies for Improving the Efficiency of Upconversion Emission and Their Physical Understanding. ChemPhysChem, 2015, 16, 505-521.	2.1	51
14	Structural interpretation of SnO ₂ nanocrystals of different morphologies synthesized by microwave irradiation and hydrothermal methods. CrystEngComm, 2014, 16, 1079-1090.	2.6	57
15	Recent development of core–shell SnO ₂ nanostructures and their potential applications. Journal of Materials Chemistry C, 2014, 2, 6706-6722.	5.5	71
16	Microstructure and photoluminescence properties of ternary Cd0.2Zn0.8S quantum dots synthesized by mechanical alloying. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	9
17	Recent Advances of Doping of SnO ₂ Nanocrystals for Their Potential Applications. Transactions of the Indian Ceramic Society, 2013, 72, 89-99.	1.0	22
18	Lanthanide based resonance energy transfer (LRET) between Ce-doped LaPO4 nanorods and coumarin 440 dye. RSC Advances, 2013, 3, 13372.	3.6	14

Arik Kar

#	Article	IF	CITATIONS
19	Core–Shell (CS) Nanostructures and Their Application Based on Magnetic and Optical Properties. Reviews in Nanoscience and Nanotechnology, 2013, 2, 106-126.	0.4	9
20	Impacts of core–shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale, 2012, 4, 3608.	5.6	130
21	Photocatalytic properties of semiconductor SnO2/CdS heterostructure nanocrystals. RSC Advances, 2012, 2, 10222.	3.6	66
22	A simple approach to generate efficient white light emission from a ZnO–ionic liquid complex. RSC Advances, 2012, 2, 4879.	3.6	29
23	Morphology dependent luminescence properties of rare-earth doped lanthanum fluoride hierarchical microstructures. Journal of Luminescence, 2012, 132, 1400-1406.	3.1	25
24	Surface Defect-Related Luminescence Properties of SnO ₂ Nanorods and Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 118-124.	3.1	304
25	Structural Changes and Spectroscopic Properties of Ce3+-Ion-Doped Sodium Yttrium Fluoride Nanocrystals: Influences of Sonication and Temperature. Journal of Physical Chemistry C, 2010, 114, 715-722.	3.1	28
26	Facile Chemical Synthesis of Nanocrystalline Thermoelectric Alloys Based on Biâ^'Sbâ^'Teâ^'Se. Crystal Growth and Design, 2010, 10, 3983-3989.	3.0	52
27	Energy transfer study between Ce3+ and Tb3+ ions in doped and core-shell sodium yttrium fluoride nanocrystals. Nanoscale, 2010, 2, 1196.	5.6	86
28	Synthesis and characterization of different shaped Sm ₂ O ₃ nanocrystals. Journal Physics D: Applied Physics, 2010, 43, 405401.	2.8	33
29	Structural and photoluminescence properties of doped and core-shell LaPO4:Eu3+ nanocrystals. Journal of Applied Physics, 2010, 108, .	2.5	51
30	Fabrication and optical properties of core/shell CdS/LaPO ₄ :Eunanorods. Journal of Materials Chemistry, 2010, 20, 916-922.	6.7	71
31	Influence of surface coating on the upconversion emission properties of LaPO4:Yb/Tm core-shell nanorods. Journal of Applied Physics, 2009, 105, 113532.	2.5	39
32	Optical and Electrical Properties of Eu ³⁺ -Doped SnO ₂ Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 4375-4380.	3.1	100
33	Band Gap Tuning of Photo Fenton-like Fe3O4/C Catalyst through Oxygen Vacancies for Advanced Visible Light Photocatalysis. Materials Advances, 0, , .	5.4	15
34	An Investigation into the Influence of α–β Quartz Phase Transition on Banded Iron Ore Comminution. Jom, 0, , 1.	1.9	0