
Chien-Chi Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4395142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Injectable Acylhydrazone‣inked RAFT Polymer Hydrogels for Sustained Protein Release and Cell Encapsulation. Advanced Healthcare Materials, 2022, 11, e2101284.	3.9	6
2	Dissolvable microgel-templated macroporous hydrogels for controlled cell assembly. Materials Science and Engineering C, 2022, 134, 112712.	3.8	13
3	Generation of the Chondroprotective Proteomes by Activating PI3K and TNFÎ \pm Signaling. Cancers, 2022, 14, 3039.	1.7	4
4	Preventing tumor progression to the bone by induced tumor-suppressing MSCs. Theranostics, 2021, 11, 5143-5159.	4.6	30
5	Probing Osteocyte Functions in Gelatin Hydrogels with Tunable Viscoelasticity. Biomacromolecules, 2021, 22, 1115-1126.	2.6	12
6	Facile Synthesis of Rapidly Degrading PEG-Based Thiol-Norbornene Hydrogels. ACS Macro Letters, 2021, 10, 341-345.	2.3	18
7	Hydrogel Models with Stiffness Gradients for Interrogating Pancreatic Cancer Cell Fate. Bioengineering, 2021, 8, 37.	1.6	11
8	Assessing monocyte phenotype in poly(γ-glutamic acid) hydrogels formed by orthogonal thiol–norbornene chemistry. Biomedical Materials (Bristol), 2021, 16, 045027.	1.7	5
9	Engineering Tools for Regulating Hypoxia in Tumour Models. Journal of Cellular and Molecular Medicine, 2021, 25, 7581-7592.	1.6	9
10	Dual Functionalization of Gelatin for Orthogonal and Dynamic Hydrogel Cross-Linking. ACS Biomaterials Science and Engineering, 2021, 7, 4196-4208.	2.6	19
11	Biomimetic stiffening of cell-laden hydrogels via sequential thiol-ene and hydrazone click reactions. Acta Biomaterialia, 2021, 130, 161-171.	4.1	13
12	Norbornene-functionalized methylcellulose as a thermo- and photo-responsive bioink. Biofabrication, 2021, 13, 045023.	3.7	13
13	Tumor Cell Secretomes in Response to Anti- and Pro-Tumorigenic Agents. Onco, 2021, 1, 101-113.	0.2	4
14	Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels. Journal of Materials Chemistry B, 2020, 8, 7835-7855.	2.9	66
15	Dynamic Click Hydrogels for Xenoâ€Free Culture of Induced Pluripotent Stem Cells. Advanced Biology, 2020, 4, e2000129.	3.0	17
16	Clickable modular polysaccharide nanoparticles for selective cell-targeting. Carbohydrate Polymers, 2020, 234, 115901.	5.1	10
17	Stabilization of enzyme-immobilized hydrogels for extended hypoxic cell culture. Emergent Materials, 2019, 2, 263-272.	3.2	9
18	Enzymatic Cross-Linking of Dynamic Thiol-Norbornene Click Hydrogels. ACS Biomaterials Science and Engineering, 2019, 5, 1247-1256.	2.6	24

#	Article	IF	CITATIONS
19	A Diffusion-Reaction Model for Predicting Enzyme-Mediated Dynamic Hydrogel Stiffening. Gels, 2019, 5, 17.	2.1	10
20	Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation. Acta Biomaterialia, 2019, 83, 83-95.	4.1	57
21	Biomimetic and enzyme-responsive dynamic hydrogels for studying cell-matrix interactions in pancreatic ductal adenocarcinoma. Biomaterials, 2018, 160, 24-36.	5.7	97
22	Dynamic PEG–Peptide Hydrogels via Visible Light and FMNâ€Induced Tyrosine Dimerization. Advanced Healthcare Materials, 2018, 7, e1800954.	3.9	20
23	Designer hydrogels: Shedding light on the physical chemistry of the pancreatic cancer microenvironment. Cancer Letters, 2018, 436, 22-27.	3.2	22
24	Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine. Biomaterials Science, 2017, 5, 589-599.	2.6	27
25	Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture. Journal of Biotechnology, 2017, 248, 25-34.	1.9	26
26	Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG–peptide hydrogels. Biomaterials Science, 2017, 5, 2231-2240.	2.6	33
27	Comparative study of visible light polymerized gelatin hydrogels for 3D culture of hepatic progenitor cells. Journal of Applied Polymer Science, 2017, 134, .	1.3	38
28	Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells. Acta Biomaterialia, 2017, 48, 258-269.	4.1	64
29	Designing Visible Light ured Thiolâ€Acrylate Hydrogels for Studying the HIPPO Pathway Activation in Hepatocellular Carcinoma Cells. Macromolecular Bioscience, 2016, 16, 496-507.	2.1	19
30	In situ formation of silk-gelatin hybrid hydrogels for affinity-based growth factor sequestration and release. RSC Advances, 2016, 6, 114353-114360.	1.7	15
31	Modular and Adaptable Tumor Niche Prepared from Visible Light Initiated Thiol-Norbornene Photopolymerization. Biomacromolecules, 2016, 17, 3872-3882.	2.6	50
32	Tuning stiffness of cell-laden hydrogel via host–guest interactions. Journal of Materials Chemistry B, 2016, 4, 4969-4974.	2.9	46
33	Dual mode gelation behavior of silk fibroin microgel embedded poly(ethylene glycol) hydrogels. Journal of Materials Chemistry B, 2016, 4, 4574-4584.	2.9	36
34	Macromol. Biosci. 4/2016. Macromolecular Bioscience, 2016, 16, 628-628.	2.1	0
35	Modulating properties of chemically crosslinked PEG hydrogels via physical entrapment of silk fibroin. Journal of Applied Polymer Science, 2016, 133, .	1.3	10

Modeling Drug Release from Synthetic Hydrogels. , 2016, , 1-33.

#	Article	IF	CITATIONS
37	Thiol–norbornene photoclick hydrogels for tissue engineering applications. Journal of Applied Polymer Science, 2015, 132, .	1.3	160
38	Photoclick Hydrogels Prepared from Functionalized Cyclodextrin and Poly(ethylene glycol) for Drug Delivery and in Situ Cell Encapsulation. Biomacromolecules, 2015, 16, 1915-1923.	2.6	60
39	Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels. RSC Advances, 2015, 5, 39844-39853.	1.7	82
40	Modular Cross-Linking of Gelatin-Based Thiol–Norbornene Hydrogels for <i>in Vitro</i> 3D Culture of Hepatocellular Carcinoma Cells. ACS Biomaterials Science and Engineering, 2015, 1, 1314-1323.	2.6	56
41	Visible light-initiated interfacial thiol-norbornene photopolymerization for forming an islet surface conformal coating. Journal of Materials Chemistry B, 2015, 3, 170-175.	2.9	24
42	Degradable thiol-acrylate hydrogels as tunable matrices for three-dimensional hepatic culture. Journal of Biomedical Materials Research - Part A, 2014, 102, 3813-3827.	2.1	40
43	PEGâ€Based Microgels Formed by Visibleâ€Lightâ€Mediated Thiolâ€Ene Photoâ€Click Reactions. Macromolecular Chemistry and Physics, 2014, 215, 507-515.	1.1	27
44	Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Acta Biomaterialia, 2014, 10, 104-114.	4.1	93
45	Thiol-ene hydrogels as desmoplasia-mimetic matrices for modeling pancreatic cancer cell growth, invasion, and drug resistance. Biomaterials, 2014, 35, 9668-9677.	5.7	65
46	Gelatin hydrogels formed by orthogonal thiol–norbornene photochemistry for cell encapsulation. Biomaterials Science, 2014, 2, 1063-1072.	2.6	193
47	Manipulating hepatocellular carcinoma cell fate in orthogonally cross-linked hydrogels. Biomaterials, 2014, 35, 6898-6906.	5.7	34
48	Effect of 3D Matrix Compositions on the Efficacy of EGFR Inhibition in Pancreatic Ductal Adenocarcinoma Cells. Biomacromolecules, 2013, 14, 3017-3026.	2.6	35
49	Salubrinal reduces expression and activity of MMP13 in chondrocytes. Osteoarthritis and Cartilage, 2013, 21, 764-772.	0.6	35
50	Knee loading reduces MMP13 activity in the mouse cartilage. BMC Musculoskeletal Disorders, 2013, 14, 312.	0.8	33
51	Interfacial Thiol-ene Photoclick Reactions for Forming Multilayer Hydrogels. ACS Applied Materials & Interfaces, 2013, 5, 1673-1680.	4.0	58
52	Facile preparation of photodegradable hydrogels by photopolymerization. Polymer, 2013, 54, 2115-2122.	1.8	32
53	The Biodegradation of Biodegradable Polymeric Biomaterials. , 2013, , 716-728.		12
54	Visibleâ€Lightâ€Mediated Thiolâ€Ene Hydrogelation Using Eosinâ€Y as the Only Photoinitiator. Macromolecular Rapid Communications, 2013, 34, 269-273.	2.0	170

4

#	Article	IF	CITATIONS
55	The influence of matrix properties on growth and morphogenesis ofÂhuman pancreatic ductal epithelial cells in 3D. Biomaterials, 2013, 34, 5117-5127.	5.7	77
56	The Influence of Matrix Degradation and Functionality on Cell Survival and Morphogenesis in <scp>PEG</scp> â€ <scp>B</scp> ased Hydrogels. Macromolecular Bioscience, 2013, 13, 1048-1058.	2.1	40
57	A Microwell Cell Culture Platform for the Aggregation of Pancreatic Î ² -Cells. Tissue Engineering - Part C: Methods, 2012, 18, 583-592.	1.1	113
58	Generation and Recovery of β-cell Spheroids From Step-growth PEG-peptide Hydrogels. Journal of Visualized Experiments, 2012, , e50081.	0.2	3
59	Cross-Linking and Degradation of Step-Growth Hydrogels Formed by Thiol–Ene Photoclick Chemistry. Biomacromolecules, 2012, 13, 2003-2012.	2.6	224
60	Affinity Peptides Protect Transforming Growth Factor Beta During Encapsulation in Poly(ethylene) Tj ETQq0 0 0	rgBT /Ove 2.6	erlock 10 Tf 50
61	PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials, 2011, 32, 9685-9695.	5.7	234
62	The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials, 2011, 32, 3564-3574.	5.7	323
63	Cell–cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing β-cell function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6380-6385.	3.3	161
64	Regulating MCP-1 diffusion in affinity hydrogels for enhancing immuno-isolation. Journal of Controlled Release, 2010, 142, 384-391.	4.8	60
65	On-resin peptide macrocyclization using thiol–ene click chemistry. Chemical Communications, 2010, 46, 4061.	2.2	87
66	Controlling Affinity Binding with Peptideâ€Functionalized Poly(ethylene glycol) Hydrogels. Advanced Functional Materials, 2009, 19, 2325-2331.	7.8	125
67	PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharmaceutical Research, 2009, 26, 631-643.	1.7	846
68	Functional PEG–peptide hydrogels to modulate local inflammation inducedby the pro-inflammatory cytokine TNFα. Biomaterials, 2009, 30, 4907-4914.	5.7	140
69	Glucagon-Like Peptide-1 Functionalized PEG Hydrogels Promote Survival and Function of Encapsulated Pancreatic β-Cells. Biomacromolecules, 2009, 10, 2460-2467.	2.6	95
70	Free-Radical-Mediated Protein Inactivation and Recovery during Protein Photoencapsulation. Biomacromolecules, 2008, 9, 75-83.	2.6	56
71	Bifunctional Monolithic Affinity Hydrogels for Dual-Protein Delivery. Biomacromolecules, 2008, 9, 789-795.	2.6	40

Biodegradable Hydrogels. , 2007, , 5-1-5-44.

#	Article	IF	CITATIONS
73	Metal-chelating affinity hydrogels for sustained protein release. Journal of Biomedical Materials Research - Part A, 2007, 83A, 954-964.	2.1	49
74	Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 2006, 58, 1379-1408.	6.6	1,429
75	Enhanced Protein Delivery from Photopolymerized Hydrogels Using a Pseudospecific Metal Chelating Ligand. Pharmaceutical Research, 2006, 23, 614-622.	1.7	47
76	Micropatterning proteins and cells on polylactic acid and poly(lactide-co-glycolide). Biomaterials, 2005, 26, 3655-3662.	5.7	65
77	Functionalized poly(ethylene glycol) hydrogels for controlling stem cell fate. , 0, , 263-278.		0