
Maryam Khoubnasabjafari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4394939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Utilizing Nanoparticle Catalyzed TMB/H₂ O₂ System for Determination of Aspirin in Exhaled Breath Condensate . Pharmaceutical Sciences, 2023, 29, 368-375.	0.1	3
2	Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications. Critical Reviews in Analytical Chemistry, 2022, 52, 1461-1487.	1.8	30
3	Prevalence of COVID-19 in patients with rheumatoid arthritis (RA) already treated with hydroxychloroquine (HCQ) compared with HCQ-naive patients with RA: a multicentre cross-sectional study. Postgraduate Medical Journal, 2022, 98, e92-e93.	0.9	0
4	Development of a fluoremetric probe based on molecularly imprinted polymers for determination of phenobarbital in exhaled breath condensate. Chemical Papers, 2022, 76, 3447-3457.	1.0	2
5	Exhaled breath condensate efficacy to identify mutations in patients with lung cancer: A pilot study. Nucleosides, Nucleotides and Nucleic Acids, 2022, 41, 370-383.	0.4	3
6	Development a coordination polymer based nanosensor for phenobarbital determination in exhaled breath condensate. Journal of Pharmaceutical and Biomedical Analysis, 2022, 215, 114761.	1.4	0
7	Ultrasensitive fluorometric determination of daclatasvir in exhaled breath condensate samples after magnetic solid-phase extraction by carbon-coated Fe3O4 magnetic nanoparticles: method optimization via central composite design combined with desirability function. Chemical Papers, 2022, 76, 6619-6628.	1.0	3
8	Predicting the solubility, thermodynamic properties and preferential solvation of sulphamethazine in {acetonitrile + water} mixtures using a minimum number of experimental data points. Physics and Chemistry of Liquids, 2021, 59, 400-411.	0.4	5
9	Molecularly imprinted polymer based-solid phase extraction combined with dispersive liquid–liquid microextraction using new deep eutectic solvent; selective extraction of valproic acid from exhaled breath condensate samples. Microchemical Journal, 2021, 161, 105772.	2.3	18
10	Sensitive monitoring of doxorubicin in plasma of patients, MDA-MB-231 and 4T1 cell lysates using electroanalysis method. Journal of Pharmaceutical and Biomedical Analysis, 2021, 192, 113701.	1.4	8
11	Validation of a colorimetric method for determination of paracetamol in exhaled breath condensate. Chemical Papers, 2021, 75, 2901-2906.	1.0	6
12	Copper nanocluster-based sensor for determination of vancomycin in exhaled breath condensate: A synchronous fluorescence spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2021, 196, 113906.	1.4	11
13	Concentration profile of tobramycin in exhaled breath condensate after inhalation of a single dose: A pilot study. Journal of Drug Delivery Science and Technology, 2021, 62, 102394.	1.4	6
14	Low potential detection of doxorubicin using a sensitive electrochemical sensor based on glassy carbon electrode modified with silver nanoparticles-supported poly(chitosan): A new platform in pharmaceutical analysis. Microchemical Journal, 2021, 165, 106101.	2.3	19
15	Development of a deep eutectic solvent-based ultrasound-assisted homogenous liquid-liquid microextraction method for simultaneous extraction of daclatasvir and sofosbuvir from urine samples. Journal of Pharmaceutical and Biomedical Analysis, 2021, 204, 114254.	1.4	24
16	Simple Determination of p-Cresol in Plasma Samples Using Fluorescence Spectroscopy Technique. Iranian Journal of Pharmaceutical Research, 2021, 20, 68-78.	0.3	0
17	Tips for improving the quality and quantity of the extracted DNA from exhaled breath condensate samples. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 688-698.	0.4	7
18	Macromolecular biomarkers of chronic obstructive pulmonary disease in exhaled breath condensate. Biomarkers in Medicine, 2020, 14, 1047-1063.	0.6	11

#	Article	IF	CITATIONS
19	Derivatization and deep eutectic solvent-based air–assisted liquid–liquid microextraction of salbutamol in exhaled breath condensate samples followed by gas chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2020, 191, 113572.	1.4	18
20	Determination of morphine and oxymorphone in exhaled breath condensate samples: Application of microwave enhanced three–component deep eutectic solvent-based air–assisted liquid–liquid microextraction and derivatization prior to gas chromatography–mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1152, 122256.	1.2	17
21	Correspondence. Retina, 2020, 40, e42-e44.	1.0	0
22	Electromembrane extraction as a new approach for determination of free concentration of phenytoin in plasma using capillary electrophoresis. DARU, Journal of Pharmaceutical Sciences, 2020, 28, 615-624.	0.9	6
23	Comments on "Thermophysical Properties Analysis of Poly(Ethylene Glycol) 600 + Methanol, Ethanol, 1-Propanol, and 2-Propanol Binary Liquid Mixtures― International Journal of Thermophysics, 2020, 41, 1.	1.0	0
24	Determination of benzo(a)pyrene in the exhaled breath condensate of cigarette smokers by microextraction and HPLC-UV. Analytical Methods, 2020, 12, 1889-1895.	1.3	2
25	A colorimetric nanoprobe based on dynamic aggregation of SDS-capped silver nanoparticles for tobramycin determination in exhaled breath condensate. Mikrochimica Acta, 2020, 187, 186.	2.5	15
26	Exhaled breath condensate as a potential specimen for diagnosing COVID-19. Bioanalysis, 2020, 12, 1195-1197.	0.6	25
27	Development of Salt Induced Liquid–Liquid Extraction Combined with Amine Based Deep Eutectic Solvent-Dispersive Liquid–Liquid Microextraction; An Efficient Analytical Method for Determination of Three Anti-Seizures in Urine Samples. Pharmaceutical Sciences, 2020, 26, 323-331.	0.1	6
28	Waste of Mechanical Ventilators as a Biological Sample for Follow up of Biomarkers and Drugs. Pharmaceutical Sciences, 2020, 26, 343-343.	0.1	5
29	Exhaled Breath Condensate: A Non-Invasive Source for Tracking of Genetic and Epigenetic Alterations in Lung Diseases . Pharmaceutical Sciences, 2020, 27, 149-161.	0.1	6
30	A Simple Colorimetric Method for Determination of Ethanol in Exhaled Breath Condensate . Pharmaceutical Sciences, 2020, 27, 297-301.	0.1	2
31	A Rapid Strategy for Repurposing Drugs for COVID-19 . Pharmaceutical Sciences, 2020, 26, S91-S93.	0.1	0
32	Microextraction and Chromatographic Analysis of Budesonide Epimers in Exhaled Breath Condensate. Current Analytical Chemistry, 2020, 16, 1032-1040.	0.6	0
33	Efficiency comparison of nylon-6-based solid-phase and stir bar sorptive extractors for carbamazepine extraction. Bioanalysis, 2019, 11, 899-911.	0.6	3
34	A microscale spectrophotometric method for quantification of doxorubicin in exhaled breath condensate. Analytical Methods, 2019, 11, 648-653.	1.3	12
35	Colorimetric determination of phenytoin using indoxyl sulfate capped silver nanoparticles. Analytical Methods, 2019, 11, 3324-3330.	1.3	4
36	In-situ microscale spectrophotometric determination of phenytoin by using branched gold nanoparticles. Mikrochimica Acta, 2019, 186, 422.	2.5	7

#	Article	IF	CITATIONS
37	A new hypothesis to investigate bioequivalence of pharmaceutical inhalation products. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 517-524.	0.9	11
38	Development of deep eutectic solvent based solidification of organic droplets-liquid phase microextraction; application to determination of some pesticides in farmers saliva and exhaled breath condensate samples. Analytical Methods, 2019, 11, 1530-1540.	1.3	19
39	A single-shot diagnostic platform based on copper nanoclusters coated with cetyl trimethylammonium bromide for determination of carbamazepine in exhaled breath condensate. Mikrochimica Acta, 2019, 186, 194.	2.5	16
40	Determination of valproic acid and 3-heptanone in plasma using air-assisted liquid-liquid microextraction with the assistance of vortex: Application in the real samples. BioImpacts, 2019, 9, 105-113.	0.7	8
41	Simultaneous Determination of Phenobarbital, Phenytoin, Carbamazepine and Carbamazepine-10,11-epoxide in Plasma of Epileptic Patients. Pharmaceutical Sciences, 2019, 25, 345-351.	0.1	4
42	Direct Monitoring of Verapamil Level in Exhaled Breath Condensate Samples. Pharmaceutical Sciences, 2019, 25, 50-56.	0.1	6
43	Determination of Verapamil in Exhaled Breath Condensate by Using Microextraction and Liquid Chromatography. Current Pharmaceutical Analysis, 2019, 15, 535-541.	0.3	4
44	Exhaled breath condensate as an alternative sample for drug monitoring. Bioanalysis, 2018, 10, 61-64.	0.6	43
45	Comments on "Malondialdehyde: A novel predictive biomarker for post-stroke depression― Journal of Affective Disorders, 2018, 225, 52-53.	2.0	2
46	Non-volatile compounds in exhaled breath condensate: review of methodological aspects. Analytical and Bioanalytical Chemistry, 2018, 410, 6411-6440.	1.9	45
47	Avoid using spectrophotometric determination of malondialdehyde as a biomarker of oxidative stress. Biomarkers in Medicine, 2018, 12, 551-554.	0.6	9
48	A Sensitive Determination of Ammonia and Nitrite in Exhaled Breath Condensate of Healthy Humans by Using Berthelot Reaction. Current Pharmaceutical Analysis, 2018, 14, 555-561.	0.3	7
49	Liquid Chromatographic Determination of Malondialdehyde in Plasma Samples After Liquid–Liquid Microextraction. Current Analytical Chemistry, 2018, 14, 416-422.	0.6	3
50	Comments on "Altered lipid peroxidation markers are related to post-traumatic stress disorder (PTSD) and not trauma itself in earthquake survivors― European Archives of Psychiatry and Clinical Neuroscience, 2017, 267, 595-596.	1.8	0
51	A new "turn-on―fluorescent sensor based on gold quantum dots and silver nanoparticles for lamotrigine detection in plasma. Talanta, 2017, 172, 126-132.	2.9	12
52	Amidosulfonic acid-capped silver nanoparticles for the spectrophotometric determination of lamotrigine in exhaled breath condensate. Mikrochimica Acta, 2017, 184, 2991-2998.	2.5	21
53	Chiral separation of methadone in exhaled breath condensate using capillary electrophoresis. Analytical Methods, 2017, 9, 2342-2350.	1.3	38
54	Electrochemical sensing of doxorubicin in unprocessed whole blood, cell lysate, and human plasma samples using thin film of poly-arginine modified glassy carbon electrode. Materials Science and Engineering C, 2017, 77, 790-802.	3.8	52

#	Article	IF	CITATIONS
55	Analysis of deferiprone in exhaled breath condensate using silver nanoparticle-enhanced terbium fluorescence. Analytical Methods, 2017, 9, 5640-5645.	1.3	18
56	Development and validation of a novel fluorometric sensor for hydrogen peroxide monitoring in exhaled breath condensate. Analytical Methods, 2017, 9, 4371-4379.	1.3	10
57	Comments on "An Investigation into the Serum Thioredoxin, Superoxide Dismutase, Malondialdehyde, and Advanced Oxidation Protein Products in Patients with Breast Cancer― Annals of Surgical Oncology, 2017, 24, 573-576.	0.7	1
58	Density, viscosity, surface tension, and molar volume of propylene glycol + water mixtures from 293 to 323 K and correlations by the Jouyban–Acree model. Arabian Journal of Chemistry, 2017, 10, S71-S75.	2.3	69
59	Co-liquefaction with acetone and GC analysis of volatile compounds in exhaled breath as lung cancer biomarkers. BioImpacts, 2017, 7, 99-108.	0.7	10
60	Effects of Analytical Procedures on the Repeatability of Malondialdehyde Determinations in Biological Samples. Pharmaceutical Sciences, 2017, 23, 193-197.	0.1	4
61	LC-MS/MS Estimation of Propranolol level in Exhaled Breath Condensate. Pharmaceutical Sciences, 2017, 23, 264-270.	0.1	13
62	Determination of 2-Octanone in Biological Samples Using Liquid–Liquid Microextractions Followed by Gas Chromatography–Flame Ionization Detection. Pharmaceutical Sciences, 2017, 23, 121-128.	0.1	2
63	Methadone Concentrations in Exhaled Breath Condensate, Serum and Urine of Patients Under Maintenance Treatment. Iranian Journal of Pharmaceutical Research, 2017, 16, 1621-1630.	0.3	11
64	Direct Analysis of Methadone in Exhaled Breath Condensate by Capillary Zone Electrophoresis. Current Pharmaceutical Analysis, 2016, 12, 137-145.	0.3	21
65	Salivary malondialdehyde as an oxidative stress biomarker in oral and systemic diseases. Journal of Dental Research, Dental Clinics, Dental Prospects, 2016, 10, 71-74.	0.4	15
66	Reliability of Malondialdehyde Measurements as a Marker of Oxidative Stress in Pediatrics. Pediatrics and Neonatology, 2016, 57, 450.	0.3	5
67	A possible reason for the low reproducibility of malondialdehyde determinations in biological samples. Bioanalysis, 2016, 8, 2179-2181.	0.6	6
68	Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. Journal of Molecular Liquids, 2016, 221, 354-357.	2.3	55
69	Comments on "Salivary 8-hydroxy-2-deoxyguanosine, malondialdehyde, vitamin C, and vitamin E in oral pre-cancer and cancer: diagnostic value and free radical mechanism of action― Clinical Oral Investigations, 2016, 20, 395-396.	1.4	5
70	Variations of malondialdehyde in pre-eclampsia. Hypertension in Pregnancy, 2016, 35, 346-349.	0.5	5
71	Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma. Journal of Pharmaceutical Analysis, 2016, 6, 235-241.	2.4	113
72	Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. Biolmpacts, 2015, 5, 123-127.	0.7	159

#	Article	IF	CITATIONS
73	Extraction and Analysis of Methadone in Exhaled Breath Condensate Using a Validated LC-UV Method. Journal of Pharmacy and Pharmaceutical Sciences, 2015, 18, 207.	0.9	19
74	Solubility of Etoricoxib in Aqueous Solutions of 1,4-Butanediol, 1,4-Dioxane, N,N-Dimethylacetamide, N,N-Dimethylformamide, Dimethyl Sulfoxide, and Ethanol at 298.2 K. Journal of Chemical & Engineering Data, 2015, 60, 2128-2134.	1.0	9
75	Comments Concerning "Comparison of Airway and Systemic Malondialdehyde Levels for Assessment of Oxidative Stress in Cystic Fibrosis― Lung, 2015, 193, 867-868.	1.4	6
76	Viscosity and surface tension of glycerolÂ+Â <i>N</i> -methyl-2-pyrrolidone mixtures from 293 to 323 K. Physics and Chemistry of Liquids, 2015, 53, 104-116.	0.4	15
77	Spectroscopic analysis of bosentan in biological samples after a liquid-liquid microextraction. BioImpacts, 2015, 5, 191-197.	0.7	10
78	Critical Review of Malondialdehyde Analysis in Biological Samples. Current Pharmaceutical Analysis, 2015, 12, 4-17.	0.3	39
79	Contribution of Tabriz academia in research activities. Pharmaceutical Sciences, 2015, 21, 30-40.	0.8	0
80	Solubility of methocarbamol in some cosolvent+water mixtures at 298.15K and correlation with the Jouyban–Acree model. Journal of Molecular Liquids, 2013, 188, 162-166.	2.3	36
81	Dispersive liquid–liquid microextraction based on solidification of floating organic droplet followed by spectrofluorimetry for determination of carvedilol in human plasma. Bioanalysis, 2013, 5, 437-448.	0.6	27
82	Solubility of salbutamol and salbutamol sulphate in ethanol+water mixtures at 25°C. Journal of Molecular Liquids, 2012, 173, 62-65.	2.3	18
83	Research Performances of Organization of Islamic Conference (OIC) Members. BioImpacts, 2012, 2, 111-22.	0.7	0
84	Predicting Solubility of Anthracene in Non-aqueous Solvent Mixtures Using a Combination of Jouyban-Acree and Abraham Models. Chemical and Pharmaceutical Bulletin, 2006, 54, 1124-1130.	0.6	12
85	Solubility Prediction of Paracetamol in Binary and Ternary Solvent Mixtures Using Jouyban-Acree Model. Chemical and Pharmaceutical Bulletin, 2006, 54, 428-431.	0.6	69
86	Solubility prediction of anthracene in nonaqueous solvent mixtures using a combination of Jouyban-Acree and Abraham models. Canadian Journal of Chemistry, 2006, 84, 874-885.	0.6	1
87	Mathematical Representation of Solubility of Electrolytes in Binary Solvent Mixtures Using Jouyban-Acree Model. Chemical and Pharmaceutical Bulletin, 2005, 53, 1591-1593.	0.6	9
88	Modeling the Entrainer Effects on Solubility of Solutes in Supercritical Carbon Dioxide. Chemical and Pharmaceutical Bulletin, 2005, 53, 290-295.	0.6	25
89	Calculation of the Viscosity of Binary Liquids at Various Temperatures Using Jouyban-Acree Model. Chemical and Pharmaceutical Bulletin, 2005, 53, 519-523.	0.6	135
90	Solubility Prediction of Anthracene in Mixed Solvents Using a Minimum Number of Experimental Data Chemical and Pharmaceutical Bulletin, 2002, 50, 21-25.	0.6	41