
Alexander A Solovev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/439478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co ₉ S ₈ Nanoparticles for Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 1776-1785.	2.4	33
2	A Strainâ€engineered Helical Structure as a Selfâ€adaptive Magnetic Microswimmer. ChemNanoMat, 2021, 7, 607-612.	1.5	8
3	Microâ€Bioâ€Chemoâ€Mechanicalâ€Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. Advanced Materials, 2021, 33, e2007465.	11.1	60
4	Structural Coloration by Internal Reflection and Interference in Hydrogel Microbubbles and Their Precursors. Advanced Optical Materials, 2021, 9, 2100259.	3.6	6
5	Air-Filled Microbubbles Based on Albumin Functionalized with Gold Nanocages and Zinc Phthalocyanine for Multimodal Imaging. Micromachines, 2021, 12, 1161.	1.4	15
6	Oxygen Generation Using Catalytic Nano/Micromotors. Micromachines, 2021, 12, 1251.	1.4	10
7	Ultrafast Ultrasound Imaging for Micro-Nanomotors: A Phantom Study. , 2021, , .		0
8	Hydrogel microcapsules with photocatalytic nanoparticles for removal of organic pollutants. Environmental Science: Nano, 2020, 7, 656-664.	2.2	51
9	Silica Nanocapsules with Unusual Shapes Accessed by Simultaneous Growth of the Template and Silica Nanostructure. Chemistry of Materials, 2020, 32, 575-581.	3.2	18
10	Catalytic/magnetic assemblies of rolled-up tubular nanomembrane-based micromotors. RSC Advances, 2020, 10, 36526-36530.	1.7	2
11	Parameters Optimization of Catalytic Tubular Nanomembrane-Based Oxygen Microbubble Generator. Micromachines, 2020, 11, 643.	1.4	6
12	Nanoparticleâ€ 5 helled Catalytic Bubble Micromotor. Advanced Materials Interfaces, 2020, 7, 1901583.	1.9	28
13	Requirement and Development of Hydrogel Micromotors towards Biomedical Applications. Research, 2020, 2020, 7659749.	2.8	35
14	A Step-by-Step Strategy for Controlled Preparations of Complex Heterostructured Colloids. Chemistry of Materials, 2019, 31, 9513-9521.	3.2	7
15	Oxygen Microbubble Generator Enabled by Tunable Catalytic Microtubes. Chemistry - an Asian Journal, 2019, 14, 2431-2434.	1.7	8
16	Tubular catalytic micromotors in transition from unidirectional bubble sequences to more complex bidirectional motion. Applied Physics Letters, 2019, 114, .	1.5	19
17	Hydrogel micromotors with catalyst-containing liquid core and shell. Journal of Physics Condensed Matter, 2019, 31, 214004.	0.7	31
18	Light-controlled two-dimensional TiO2 plate micromotors. RSC Advances, 2019, 9, 29433-29439.	1.7	12

#	Article	IF	CITATIONS
19	Localâ€Curvatureâ€Controlled Nonâ€Epitaxial Growth of Hierarchical Nanostructures. Angewandte Chemie, 2018, 130, 3834-3838.	1.6	19
20	Localâ€Curvatureâ€Controlled Nonâ€Epitaxial Growth of Hierarchical Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 3772-3776.	7.2	28
21	Carbon dioxide bubble-propelled microengines in carbonated water and beverages. Chemical Communications, 2018, 54, 5692-5695.	2.2	14
22	Biosystem Assembly: Origami Biosystems: 3D Assembly Methods for Biomedical Applications (Adv.) Tj ETQq0 0 (OrgBT ∕Ov	erlock 10 Tf 5
23	Origami Biosystems: 3D Assembly Methods for Biomedical Applications. Advanced Biology, 2018, 2, 1800230.	3.0	57
24	Hydrogel Microcapsules with Dynamic pH-Responsive Properties from Methacrylic Anhydride. Macromolecules, 2018, 51, 5798-5805.	2.2	45
25	Geometry Design, Principles and Assembly of Micromotors. Micromachines, 2018, 9, 75.	1.4	53
26	Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery. Nanoscale, 2013, 5, 1294-1297.	2.8	232
27	Collective behaviour of self-propelled catalytic micromotors. Nanoscale, 2013, 5, 1284.	2.8	101
28	Self-Propelled Nanotools. ACS Nano, 2012, 6, 1751-1756.	7.3	398
29	Controlled manipulation of multiple cells using catalytic microbots. Chemical Communications, 2011, 47, 698-700.	2.2	242
30	Tunable catalytic tubular micro-pumps operating at low concentrations of hydrogen peroxide. Physical Chemistry Chemical Physics, 2011, 13, 10131.	1.3	74
31	Microbots Swimming in the Flowing Streams of Microfluidic Channels. Journal of the American Chemical Society, 2011, 133, 701-703.	6.6	236
32	Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chemical Society Reviews, 2011, 40, 2109.	18.7	584
33	Lightâ€Controlled Propulsion of Catalytic Microengines. Angewandte Chemie - International Edition, 2011, 50, 10875-10878.	7.2	145
34	Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Microâ€objects. Advanced Functional Materials, 2010, 20, 2430-2435.	7.8	390
35	Catalytic Microstrider at the Air–Liquid Interface. Advanced Materials, 2010, 22, 4340-4344.	11.1	61
36	Dynamics of Biocatalytic Microengines Mediated by Variable Friction Control. Journal of the American Chemical Society, 2010, 132, 13144-13145.	6.6	242

#	Article	IF	CITATIONS
37	Catalytic Microtubular Jet Engines Selfâ€Propelled by Accumulated Gas Bubbles. Small, 2009, 5, 1688-1692.	5.2	606
38	Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers. Advanced Materials, 2008, 20, 4085-4090.	11.1	608