Mary T Silcox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4394703/publications.pdf

Version: 2024-02-01

88	3,711	27 h-index	57
papers	citations		g-index
96	96	96	2485
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ovariectomized rat model and shape variation in the bony labyrinth. Anatomical Record, 2022, 305, 3283-3296.	0.8	1
2	Untangling the ecological signal in the dental morphology in the bat superfamily Noctilionoidea. Journal of Mammalian Evolution, 2022, 29, 531-545.	1.0	17
3	Scaling patterns of cerebellar petrosal lobules in Euarchontoglires: Impacts of ecology and phylogeny. Anatomical Record, 2022, 305, 3472-3503.	0.8	8
4	Diet drove brain and dental morphological coevolution in strepsirrhine primates. PLoS ONE, 2022, 17, e0269041.	1.1	2
5	Evolution of arboreality and fossoriality in squirrels and aplodontid rodents: Insights from the semicircular canals of fossil rodents. Journal of Anatomy, 2021, 238, 96-112.	0.9	12
6	The effect of high wear diets on the relative pulp volume of the lower molars. American Journal of Physical Anthropology, 2021, 174, 804-811.	2.1	3
7	Cladogenesis and replacement in the fossil record of Microsyopidae (?Primates) from the southern Bighorn Basin, Wyoming. Biology Letters, 2021, 17, 20200824.	1.0	3
8	Early life malnutrition and fluctuating asymmetry in the rat bony labyrinth. Anatomical Record, 2021, 304, 2645-2660.	0.8	8
9	The impact of locomotion on the brain evolution of squirrels and close relatives. Communications Biology, 2021, 4, 460.	2.0	28
10	Dietary shifts in a group of early EoceneÂeuarchontans (Microsyopidae) in association with climatic change. Palaeontology, 2021, 64, 609-628.	1.0	4
11	Lagomorpha as a Model Morphological System. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	9
12	The largest and earliest known sample of dental caries in an extinct mammal (Mammalia, Euarchonta,) Tj ETQq0	0 Q.rgBT /	Ovgrlock 10 T
13	Mammalian molar complexity follows simple, predictable patterns. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	15
14	Intraspecific variation in molar topography of the early Eocene stem primate <i>Microsyops latidens</i> (Mammalia, ?Primates). Journal of Vertebrate Paleontology, 2021, 41, .	0.4	3
15	Dental Signatures for Exudativory in Living Primates, with Comparisons to Other Gouging Mammals. Anatomical Record, 2020, 303, 265-281.	0.8	53
16	A Novel Method for Assessing Enamel Thickness Distribution in the Anterior Dentition as a Signal for Gouging and Other Extractive Foraging Behaviors in Gummivorous Mammals. Folia Primatologica, 2020, 91, 365-384.	0.3	6
17	Cranial endocast of the stem lagomorph <i>Megalagus</i> and brain structure of basal Euarchontoglires. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200665.	1.2	17
18	Can bony labyrinth dimensions predict biological sex in archaeological samples?. Journal of Archaeological Science: Reports, 2020, 31, 102354.	0.2	5

#	Article	IF	CITATIONS
19	Cranial anatomy of <i>Microsyops annectens </i> (Microsyopidae, Euarchonta, Mammalia) from the middle Eocene of Northwestern Wyoming. Journal of Paleontology, 2020, 94, 979-1006.	0.5	12
20	Using three-dimensional geometric morphometric and dental topographic analyses to infer the systematics and paleoecology of fossil treeshrews (Mammalia, Scandentia). Journal of Paleontology, 2020, 94, 1202-1212.	0.5	14
21	What We Know (and Don't Know) About the Fossil Records of Lorisids. , 2020, , 33-46.		4
22	The Toothcomb of <i>Karanisia clarki </i> ., 2020, , 67-75.		5
23	What Role Did Gum-Feeding Play in the Evolution of the Lorises?. , 2020, , 153-162.		1
24	First 3D Dental Topographic Analysis of the Enamel-Dentine Junction in Non-Primate Euarchontans: Contribution of the Enamel-Dentine Junction to Molar Morphology. Journal of Mammalian Evolution, 2019, 26, 587-598.	1.0	13
25	The frugivorous insectivores? Functional morphological analysis of molar topography for inferring diet in extant treeshrews (Scandentia). Journal of Mammalogy, 2019, , .	0.6	2
26	Skeletal morphology of the early Paleocene plesiadapiform Torrejonia wilsoni (Euarchonta,) Tj ETQq0 0 0 rgBT /O	verlgck 10) Tf 50 462 To
27	Endocranial shape variation in the squirrelâ€related clade and their fossil relatives using 3D geometric morphometrics: contributions of locomotion and phylogeny to brain shape. Journal of Zoology, 2019, 308, 197-211.	0.8	35
28	Threeâ€Dimensional Geometric Morphometric Analysis of Treeshrew (Scandentia) Lower Molars: Insight into Dental Variation and Systematics. Anatomical Record, 2019, 302, 1154-1168.	0.8	9
29	New Virtual Endocasts of Eocene Ischyromyidae and Their Relevance in Evaluating Neurological Changes Occurring Through Time in Rodentia. Journal of Mammalian Evolution, 2019, 26, 345-371.	1.0	23
30	Disappearing Enamel and Molars: The Evolution of a Dietary Niche Focused on Gums. FASEB Journal, 2019, 33, 452.21.	0.2	0
31	Dental topographic analysis of paromomyid (Plesiadapiformes, Primates) cheek teeth: more than 15 million years of changing surfaces and shifting ecologies. Historical Biology, 2018, 30, 76-88.	0.7	77
32	Virtual endocasts of fossil Sciuroidea: brain size reduction in the evolution of fossoriality. Palaeontology, 2018, 61, 919-948.	1.0	28
33	The European Paromomyidae (Primates, Mammalia): taxonomy, phylogeny, and biogeographic implications. Journal of Paleontology, 2018, 92, 920-937.	0.5	7
34	New omomyoids (Euprimates, Mammalia) from the late Uintan of southern California, USA, and the question of the extinction of the Paromomyidae (Plesiadapiformes, Primates). Palaeontologia Electronica, 2018, 21, .	0.9	4
35	The evolutionary radiation of plesiadapiforms. Evolutionary Anthropology, 2017, 26, 74-94.	1.7	79
36	Major Questions in the Study of Primate Origins. Annual Review of Earth and Planetary Sciences, 2017, 45, 113-137.	4.6	63

#	Article	IF	CITATIONS
37	Oldest skeleton of a plesiadapiform provides additional evidence for an exclusively arboreal radiation of stem primates in the Palaeocene. Royal Society Open Science, 2017, 4, 170329.	1.1	30
38	Virtual endocast of the early Oligocene <i>Cedromus wilsoni</i> (Cedromurinae) and brain evolution in squirrels. Journal of Anatomy, 2017, 230, 128-151.	0.9	36
39	The first major primate extinction: An evaluation of paleoecological dynamics of North American stem primates using a homology free measure of tooth shape. American Journal of Physical Anthropology, 2016, 159, 683-697.	2.1	83
40	Surfaces and spaces: troubleshooting the study of dietary niche space overlap between North American stem primates and rodents. Surface Topography: Metrology and Properties, 2016, 4, 024005.	0.9	25
41	First virtual endocasts of adapiform primates. Journal of Human Evolution, 2016, 99, 52-78.	1.3	23
42	Internal carotid arterial canal size and scaling in Euarchonta: Re-assessing implications for arterial patency and phylogenetic relationships in early fossil primates. Journal of Human Evolution, 2016, 97, 123-144.	1.3	18
43	Cranial anatomy of Paleogene Micromomyidae and implications for early primate evolution. Journal of Human Evolution, 2016, 96, 58-81.	1.3	13
44	Virtual endocasts of Eocene <i>Paramys</i> (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152316.	1.2	34
45	First virtual endocasts of a fossil rodent: <i>lschyromys typus </i> (Ischyromyidae, Oligocene) and brain evolution in rodents. Journal of Vertebrate Paleontology, 2016, 36, e1095762.	0.4	31
46	Cranial dimensions as estimators of body mass and locomotor habits in extant and fossil rodents. Journal of Vertebrate Paleontology, 2016, 36, e1014905.	0.4	36
47	Life history of the most complete fossil primate skeleton: exploring growth models for <i>Darwinius</i> . Royal Society Open Science, 2015, 2, 150340.	1.1	49
48	New partial skeletons of Palaeocene Nyctitheriidae and evaluation of proposed euarchontan affinities. Biology Letters, 2015, 11, 20140911.	1.0	19
49	Quantification of neocortical ratios in stem primates. American Journal of Physical Anthropology, 2015, 157, 363-373.	2.1	35
50	Primate Origins and Supraordinal Relationships: Morphological Evidence., 2015,, 1053-1081.		16
51	Getting Back to Basics: A Virtual Dissection of the Cranium of Microsyops Annectens (Mammalia,) Tj ETQq1 1 0.	784314 rg	gBT _d /Overlock
52	Reconstructing the Virtual Endocasts of Two Eocene Primates from High-Resolution X-Ray Computed Tomography Data. The Paleontological Society Special Publications, 2014, 13, 175-175.	0.0	0
53	<i>lschyromys Typus</i> : First Virtual Endocast of a Fossil Rodent. The Paleontological Society Special Publications, 2014, 13, 175-176.	0.0	0
54	A pragmatic approach to the species problem from a paleontological perspective. Evolutionary Anthropology, 2014, 23, 24-26.	1.7	7

#	Article	IF	Citations
55	Response to Comment on "The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals― Science, 2013, 341, 613-613.	6.0	12
56	The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals. Science, 2013, 339, 662-667.	6.0	1,000
57	Evolution of locomotion in Anthropoidea: the semicircular canal evidence. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3467-3475.	1.2	51
58	New discoveries of early Paleocene (Torrejonian) primates from the Nacimiento Formation, San Juan Basin, New Mexico. Journal of Human Evolution, 2012, 63, 805-833.	1.3	14
59	Technical note: A landmark-based approach to the study of the ear ossicles using ultra-high-resolution X-ray computed tomography data. American Journal of Physical Anthropology, 2011, 145, 665-671.	2.1	6
60	Cochlear Labyrinth Volume in Euarchontoglirans: Implications for the Evolution of Hearing in Primates. Anatomical Record, 2011, 294, 263-266.	0.8	13
61	Endocranial morphology of <i>Labidolemur kayi </i> (Apatemyidae, Apatotheria) and its relevance to the study of brain evolution in Euarchontoglires. Journal of Vertebrate Paleontology, 2011, 31, 1314-1325.	0.4	21
62	Endocasts of Microsyops (Microsyopidae, Primates) and the evolution of the brain in primitive primates. Journal of Human Evolution, 2010, 58, 505-521.	1.3	83
63	Cranial anatomy of Paleocene and Eocene Labidolemur kayi (Mammalia: Apatotheria), and the relationships of the Apatemyidae to other mammals. Zoological Journal of the Linnean Society, 2010, 160, 773-825.	1.0	38
64	Auditory Functional Analysis: Lessons From the Primate Auditory Ossicles. FASEB Journal, 2010, 24, 449.7.	0.2	0
65	Virtual endocast of <i>Ignacius graybullianus</i> (Paromomyidae, Primates) and brain evolution in early primates. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10987-10992.	3.3	74
66	Semicircular canal system in early primates. Journal of Human Evolution, 2009, 56, 315-327.	1.3	115
67	The semicircular canal system and locomotion: The case of extinct lemuroids and lorisoids. Evolutionary Anthropology, 2008, 17, 135-145.	1.7	112
68	Early Eocene Paromomyidae (Mammalia, Primates) from the southern Bighorn Basin, Wyoming: Systematics and evolution. Journal of Paleontology, 2008, 82, 1074-1113.	0.5	7
69	Early Eocene Paromomyidae (Mammalia, Primates) from the southern Bighorn Basin, Wyoming: Systematics and evolution. Journal of Paleontology, 2008, 82, 1074-1113.	0.5	7
70	Archonta summary. , 2008, , 161-173.		1
71	Plesiadapiformes. , 2008, , 207-238.		21
72	The Biogeographic Origins of Primates and Euprimates: East, West, North, or South of Eden?., 2008, , 199-231.		29

#	Article	IF	CITATIONS
73	The primate semicircular canal system and locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10808-10812.	3.3	337
74	Primate Taxonomy, Plesiadapiforms, and Approaches to Primate Origins., 2007, , 143-178.		26
75	Evolution of pedal grasping in Primates. Journal of Human Evolution, 2007, 53, 103-107.	1.3	83
76	Revisiting the adaptive origins of primates (again). Journal of Human Evolution, 2007, 53, 321-324.	1.3	22
77	New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1159-1164.	3.3	242
78	1 Primate Origins and Supraordinal Relationships: Morphological Evidence. , 2007, , 831-859.		73
79	Cranial anatomy of the Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography, and the relationships of plesiadapiforms to Euprimates. Journal of Human Evolution, 2006, 50, 1-35.	1.3	78
80	New discoveries on the middle ear anatomy of Ignacius graybullianus (Paromomyidae, Primates) from ultra high resolution X-ray computed tomography. Journal of Human Evolution, 2003, 44, 73-86.	1.3	47
81	THE DIET OF WORMS: AN ANALYSIS OF MOLE DENTAL MICROWEAR. Journal of Mammalogy, 2002, 83, 804-814.	0.6	44
82	Paleoprimatology at the Society of Vertebrate Paleontology. Evolutionary Anthropology, 2002, 11, 1-3.	1.7	11
83	Primate origins and adaptations: A multidisciplinary perspective. Evolutionary Anthropology, 2002, 11, 171-172.	1.7	2
84	Unusual Vertebrate Microfaunas From the Willwood Formation, Early Eocene of the Bighorn Basin, Wyoming. Topics in Geobiology, 2001, , 131-164.	0.6	10
85	New specimens of Elphidotarsius russelli (Mammalia, ?Primates, Carpolestidae) and a revision of Plesiadapoid relationships. Journal of Vertebrate Paleontology, 2001, 21, 132-152.	0.4	22
86	New basicrania of Paleocene-Eocenelgnacius: Re-evaluation of the Plesiadapiform-Dermopteran link. American Journal of Physical Anthropology, 2001, 116, 184-198.	2.1	66
87	Primate evolution at the society of vertebrate paleontology. Evolutionary Anthropology, 1999, 8, 5-6.	1.7	1
88	The influence of subsistence strategy and climate on bony labyrinth morphology in recent Homo sapiens. American Journal of Biological Anthropology, 0, , .	0.6	0