
Kirsten Sandvig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4394692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today, 2011, 6, 176-185.	6.2	1,063
2	Extraction of Cholesterol with Methyl-β-Cyclodextrin Perturbs Formation of Clathrin-coated Endocytic Vesicles. Molecular Biology of the Cell, 1999, 10, 961-974.	0.9	905
3	Lipids in exosomes: Current knowledge and the way forward. Progress in Lipid Research, 2017, 66, 30-41.	5.3	751
4	Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1302-1309.	1.2	546
5	Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature, 1992, 358, 510-512.	13.7	429
6	Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. Journal of Lipid Research, 2019, 60, 9-18.	2.0	418
7	Internalization of cholera toxin by different endocytic mechanisms. Journal of Cell Science, 2001, 114, 3737-3747.	1.2	343
8	An emerging focus on lipids in extracellular vesicles. Advanced Drug Delivery Reviews, 2020, 159, 308-321.	6.6	289
9	Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends in Cell Biology, 2003, 13, 92-100.	3.6	261
10	Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. European Journal of Cancer, 2017, 70, 122-132.	1.3	254
11	Penetration of protein toxins into cells. Current Opinion in Cell Biology, 2000, 12, 407-413.	2.6	253
12	Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Letters, 2002, 529, 49-53.	1.3	235
13	Membrane ruffling and macropinocytosis in A431 cells require cholesterol. Journal of Cell Science, 2002, 115, 2953-2962.	1.2	232
14	The Ways of Endocytosis. International Review of Cytology, 1989, 117, 131-177.	6.2	229
15	Dual mode of signal transduction by externally added acidic fibroblast growth factor. Cell, 1994, 76, 1039-1051.	13.5	226
16	Membrane Traffic Exploited by Protein Toxins. Annual Review of Cell and Developmental Biology, 2002, 18, 1-24.	4.0	224
17	Clathrin-independent endocytosis: mechanisms and function. Current Opinion in Cell Biology, 2011, 23, 413-420.	2.6	200
18	Membrane ruffling and macropinocytosis in A431 cells require cholesterol. Journal of Cell Science, 2002, 115, 2953-62.	1.2	191

#	Article	IF	CITATIONS
19	Furin-induced Cleavage and Activation of Shiga Toxin. Journal of Biological Chemistry, 1995, 270, 10817-10821.	1.6	189
20	ldentification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Molecular Cancer, 2017, 16, 156.	7.9	188
21	PIKfyve inhibition increases exosome release and induces secretory autophagy. Cellular and Molecular Life Sciences, 2016, 73, 4717-4737.	2.4	187
22	Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget, 2015, 6, 30357-30376.	0.8	179
23	Shiga toxins. Toxicon, 2012, 60, 1085-1107.	0.8	169
24	Sequestration of Epidermal Growth Factor Receptors in Non-caveolar Lipid Rafts Inhibits Ligand Binding. Journal of Biological Chemistry, 2002, 277, 18954-18960.	1.6	166
25	Regulation of exosome release by glycosphingolipids and flotillins. FEBS Journal, 2014, 281, 2214-2227.	2.2	157
26	Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochemistry and Cell Biology, 2008, 129, 267-276.	0.8	152
27	Pathways followed by ricin and Shiga toxin into cells. Histochemistry and Cell Biology, 2002, 117, 131-141.	0.8	150
28	Clathrin-independent endocytosis: an increasing degree of complexity. Histochemistry and Cell Biology, 2018, 150, 107-118.	0.8	148
29	Cellular Trafficking of Quantum Dot-Ligand Bioconjugates and Their Induction of Changes in Normal Routing of Unconjugated Ligands. Nano Letters, 2008, 8, 1858-1865.	4.5	136
30	Pathways followed by protein toxins into cells. International Journal of Medical Microbiology, 2004, 293, 483-490.	1.5	134
31	Endocytosis and retrograde transport of Shiga toxin. Toxicon, 2010, 56, 1181-1185.	0.8	125
32	Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin. Journal of Cell Science, 2004, 117, 2321-2331.	1.2	121
33	Expression of Mutant Dynamin Inhibits Toxicity and Transport of Endocytosed Ricin to the Golgi Apparatus. Journal of Cell Biology, 1998, 140, 553-563.	2.3	118
34	Toxin-induced cell lysis: Protection by 3-methyladenine and cycloheximide. Experimental Cell Research, 1992, 200, 253-262.	1.2	115
35	Effect of temperature on the uptake, excretion and degradation of abrin and ricin by HeLa cells. Experimental Cell Research, 1979, 121, 15-25.	1.2	114
36	Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Letters, 2010, 584, 2626-2634.	1.3	108

#	Article	IF	CITATIONS
37	Cellular internalization of cytolethal distending toxin: a new end to a known pathway. Cellular Microbiology, 2005, 7, 921-934.	1.1	103
38	The Ether Lipid Precursor Hexadecylglycerol Stimulates the Release and Changes the Composition of Exosomes Derived from PC-3 Cells. Journal of Biological Chemistry, 2015, 290, 4225-4237.	1.6	102
39	Highly Potent Inhibitors of Proprotein Convertase Furin as Potential Drugs for Treatment of Infectious Diseases. Journal of Biological Chemistry, 2012, 287, 21992-22003.	1.6	98
40	Caveolae: Stable Membrane Domains with a Potential for Internalization. Traffic, 2005, 6, 720-724.	1.3	95
41	Shiga toxin and its use in targeted cancer therapy and imaging. Microbial Biotechnology, 2011, 4, 32-46.	2.0	95
42	Endosome to Golgi Transport of Ricin Is Regulated by Cholesterol. Molecular Biology of the Cell, 2000, 11, 4205-4216.	0.9	89
43	Role for Dynamin in Late Endosome Dynamics and Trafficking of the Cation-independent Mannose 6-Phosphate Receptor. Molecular Biology of the Cell, 2000, 11, 481-495.	0.9	83
44	Retrograde transport of protein toxins through the Golgi apparatus. Histochemistry and Cell Biology, 2013, 140, 317-326.	0.8	82
45	Binding, Uptake and Degradation of the Toxic Proteins Abrin and Ricin by Toxin-Resistant Cell Variants. FEBS Journal, 1978, 82, 13-23.	0.2	81
46	Endocytosis without clathrin. Trends in Cell Biology, 1994, 4, 275-277.	3.6	81
47	Endosome to Golgi Transport of Ricin Is Independent of Clathrin and of the Rab9- and Rab11-GTPases. Molecular Biology of the Cell, 2001, 12, 2099-2107.	0.9	81
48	Proteomic Analysis of Microvesicles Released by the Human Prostate Cancer Cell Line PC-3. Molecular and Cellular Proteomics, 2012, 11, M111.012914-1-M111.012914-11.	2.5	81
49	Shiga Toxin Regulates Its Entry in a Syk-dependent Manner. Molecular Biology of the Cell, 2006, 17, 1096-1109.	0.9	77
50	Interdigitation of long-chain sphingomyelin induces coupling of membrane leaflets in a cholesterol dependent manner. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 281-288.	1.4	76
51	EDEM Is Involved in Retrotranslocation of Ricin from the Endoplasmic Reticulum to the Cytosol. Molecular Biology of the Cell, 2006, 17, 1664-1675.	0.9	73
52	Exosomal proteins as prostate cancer biomarkers in urine: From mass spectrometry discovery to immunoassay-based validation. European Journal of Pharmaceutical Sciences, 2017, 98, 80-85.	1.9	73
53	Transport of Ricin from Endosomes to the Golgi Apparatus is Regulated by Rab6A and Rab6A′. Traffic, 2006, 7, 663-672.	1.3	72
54	Endocytosis and intracellular transport of ricin: recent discoveries. FEBS Letters, 1999, 452, 67-70.	1.3	71

#	Article	IF	CITATIONS
55	Role of Processing and Intracellular Transport for Optimal Toxicity of Shiga Toxin and Toxin Mutants. Experimental Cell Research, 1995, 218, 39-49.	1.2	69
56	Lipid requirements for entry of protein toxins into cells. Progress in Lipid Research, 2014, 54, 1-13.	5.3	69
57	Sorting nexin 8 regulates endosome-to-Colgi transport. Biochemical and Biophysical Research Communications, 2009, 390, 109-114.	1.0	67
58	The role of PS 18:0/18:1 in membrane function. Nature Communications, 2019, 10, 2752.	5.8	65
59	Novel Furin Inhibitors with Potent Antiâ€infectious Activity. ChemMedChem, 2015, 10, 1218-1231.	1.6	64
60	Glycosphingolipid Requirements for Endosomeâ€ŧoâ€Golgi Transport of Shiga Toxin. Traffic, 2009, 10, 868-882.	1.3	60
61	New metal-based nanoparticles for intravenous use: requirements for clinical success with focus on medical imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 730-737.	1.7	60
62	SNX1 and SNX2 mediate retrograde transport of Shiga toxin. Biochemical and Biophysical Research Communications, 2007, 358, 566-570.	1.0	58
63	Phosphoinositide-Regulated Retrograde Transport of Ricin: Crosstalk Between hVps34 and Sorting Nexins. Traffic, 2007, 8, 297-309.	1.3	57
64	Intracellular Transport and Cytotoxicity of the Protein Toxin Ricin. Toxins, 2019, 11, 350.	1.5	56
65	Golgi Vesiculation Induced by Cholesterol Occurs by a Dynamin- and cPLA2-Dependent Mechanism. Traffic, 2005, 6, 144-156.	1.3	54
66	Are caveolae involved in clathrin-independent endocytosis?. Trends in Cell Biology, 1993, 3, 249-251.	3.6	52
67	The Mitogen-activated Protein Kinase p38 Links Shiga Toxin-dependent Signaling and Trafficking. Molecular Biology of the Cell, 2008, 19, 95-104.	0.9	52
68	Phorbol Myristate Acetate Selectively Stimulates Apical Endocytosis via Protein Kinase C in Polarized MDCK Cells. Experimental Cell Research, 1995, 217, 157-168.	1.2	51
69	Protein Kinase Cδ Is Activated by Shiga Toxin and Regulates Its Transport. Journal of Biological Chemistry, 2007, 282, 16317-16328.	1.6	51
70	Cell-Penetrating Peptides: Possibilities and Challenges for Drug Delivery in Vitro and in Vivo. Molecules, 2015, 20, 13313-13323.	1.7	51
71	Protection against Shiga Toxins. Toxins, 2017, 9, 44.	1.5	51
72	The A-subunit of surface-bound Shiga toxin stimulates clathrin-dependent uptake of the toxin. FEBS Journal, 2005, 272, 4103-4113.	2.2	50

#	Article	IF	CITATIONS
73	Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. Journal of Nanobiotechnology, 2012, 10, 33.	4.2	50
74	Drug-Loaded Photosensitizer-Chitosan Nanoparticles for Combinatorial Chemo- and Photodynamic-Therapy of Cancer. Biomacromolecules, 2020, 21, 1489-1498.	2.6	45
75	Role of the Disulfide Bond in Shiga Toxin A-chain for Toxin Entry into Cells. Journal of Biological Chemistry, 1997, 272, 11414-11419.	1.6	44
76	Inhibition of endocytosis from coated pits by acidification of the cytosol. Journal of Cellular Biochemistry, 1988, 36, 73-81.	1.2	43
77	Role of Lipids in the Retrograde Pathway of Ricin Intoxication. Traffic, 2003, 4, 544-552.	1.3	42
78	Interplay between Toxin Transport and Flotillin Localization. PLoS ONE, 2010, 5, e8844.	1.1	42
79	Cell density-induced changes in lipid composition and intracellular trafficking. Cellular and Molecular Life Sciences, 2014, 71, 1097-1116.	2.4	42
80	Induction of Direct Endosome to Endoplasmic Reticulum Transport in Chinese Hamster Ovary (CHO) Cells (LdIF) with a Temperature-sensitive Defect in Ϊμ-Coatomer Protein (Ϊμ-COP). Journal of Biological Chemistry, 2003, 278, 35850-35855.	1.6	41
81	Clostridium botulinum C2 toxin is internalized by clathrin- and Rho-dependent mechanisms. Cellular Microbiology, 2010, 12, 1809-1820.	1.1	41
82	Cholesterol Loading Induces a Block in the Exit of VSVG from the TGN. Traffic, 2003, 4, 772-784.	1.3	38
83	Cytotoxicity of Poly(Alkyl Cyanoacrylate) Nanoparticles. International Journal of Molecular Sciences, 2017, 18, 2454.	1.8	38
84	Cabazitaxel-loaded Poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. Journal of Controlled Release, 2019, 293, 183-192.	4.8	38
85	Effect of potassium depletion of Hep 2 cells on intracellular pH and on chloride uptake by anion antiport. Journal of Cellular Physiology, 1987, 131, 6-13.	2.0	37
86	Neutralizing Monoclonal Antibodies against Disparate Epitopes on Ricin Toxin's Enzymatic Subunit Interfere with Intracellular Toxin Transport. Scientific Reports, 2016, 6, 22721.	1.6	36
87	SNX4 in Complex with Clathrin and Dynein: Implications for Endosome Movement. PLoS ONE, 2009, 4, e5935.	1.1	36
88	Reconstitution of Clathrin-Independent Endocytosis at the Apical Domain of Permeabilized MDCK II cells: Requirement for a Rho-Family GTPase. Traffic, 2001, 2, 26-36.	1.3	35
89	Clathrin- and Dynamin-Independent Endocytosis of FGFR3 – Implications for Signalling. PLoS ONE, 2011, 6, e21708.	1.1	35
90	The Role of Lectin-Carbohydrate Interactions in the Regulation of ER-Associated Protein Degradation. Molecules, 2015, 20, 9816-9846.	1.7	35

#	Article	IF	CITATIONS
91	Shiga Toxin Increases Formation of Clathrin-Coated Pits through Syk Kinase. PLoS ONE, 2010, 5, e10944.	1.1	34
92	Antibody-Mediated Inhibition of Ricin Toxin Retrograde Transport. MBio, 2014, 5, e00995.	1.8	34
93	The role of lipid species in membranes and cancer-related changes. Cancer and Metastasis Reviews, 2020, 39, 343-360.	2.7	34
94	Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Advanced Drug Delivery Reviews, 2022, 186, 114326.	6.6	33
95	Effect of Calmodulin Antagonists on Endocytosis and Intracellular Transport of Ricin in Polarized MDCK Cells. Experimental Cell Research, 1996, 227, 298-308.	1.2	32
96	A single point mutation in ricin A-chain increases toxin degradation and inhibits EDEM1-dependent ER retrotranslocation. Biochemical Journal, 2011, 436, 371-385.	1.7	32
97	Determining the Turnover of Glycosphingolipid Species by Stable-Isotope Tracer Lipidomics. Journal of Molecular Biology, 2016, 428, 4856-4866.	2.0	32
98	Development of nanoparticles for clinical use. Nanomedicine, 2014, 9, 1295-1299.	1.7	30
99	Ricin and Ricin-Containing Immunotoxins: Insights into Intracellular Transport and Mechanism of action in Vitro. Antibodies, 2013, 2, 236-269.	1.2	28
100	Selective regulation of the Rab9-independent transport of ricin to the Golgi apparatus by calcium. Journal of Cell Science, 2002, 115, 3449-3456.	1.2	28
101	The Ether Lipid Precursor Hexadecylglycerol Causes Major Changes in the Lipidome of HEp-2 Cells. PLoS ONE, 2013, 8, e75904.	1.1	28
102	Effect of potassium depletion of cells on their sensitivity to diphtheria toxin and pseudomonas toxin. Journal of Cellular Physiology, 1985, 124, 54-60.	2.0	27
103	Genetic blockage of endocytic pathways reveals differences in the intracellular processing of non-viral gene delivery systems. Journal of Controlled Release, 2012, 163, 385-395.	4.8	27
104	Structural requirements for furin-induced cleavage and activation of Shiga toxin. Biochemical and Biophysical Research Communications, 2007, 357, 144-149.	1.0	26
105	Biological response and cytotoxicity induced by lipid nanocapsules. Journal of Nanobiotechnology, 2020, 18, 5.	4.2	26
106	Regulation of ErbB2 localization and function in breast cancer cells by ERM proteins. Oncotarget, 2016, 7, 25443-25460.	0.8	25
107	Depletion of Sphingolipids Facilitates Endosome to Golgi Transport of Ricin. Traffic, 2006, 7, 1243-1253.	1.3	23
108	Derlinâ€Dependent Retrograde Transport from Endosomes to the Golgi Apparatus. Traffic, 2011, 12, 1417-1431.	1.3	23

7

#	Article	IF	CITATIONS
109	Small variations in nanoparticle structure dictate differential cellular stress responses and mode of cell death. Nanotoxicology, 2019, 13, 761-782.	1.6	23
110	Mechanism of cellular uptake and cytotoxicity of paclitaxel loaded lipid nanocapsules in breast cancer cells. International Journal of Pharmaceutics, 2021, 597, 120217.	2.6	23
111	A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking. PLoS ONE, 2016, 11, e0156893.	1.1	23
112	Selective regulation of the Rab9-independent transport of ricin to the Golgi apparatus by calcium. Journal of Cell Science, 2002, 115, 3449-56.	1.2	23
113	Flotillin depletion affects ErbB protein levels in different human breast cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1987-1996.	1.9	22
114	Characterization of clathrin and Syk interaction upon Shiga toxin binding. Cellular Signalling, 2009, 21, 1161-1168.	1.7	21
115	Cross-linking of glycosphingolipids at the plasma membrane: consequences for intracellular signaling and traffic. Cellular and Molecular Life Sciences, 2016, 73, 1301-1316.	2.4	21
116	The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget, 2016, 7, 86871-86888.	0.8	21
117	Endosome-to-Golgi Transport Is Regulated by Protein Kinase A Type IIα. Journal of Biological Chemistry, 2003, 278, 1991-1997.	1.6	20
118	Annexin A1 and A2: Roles in Retrograde Trafficking of Shiga Toxin. PLoS ONE, 2012, 7, e40429.	1.1	20
119	Inhibitors of Intravesicular Acidification Protect Against Shiga Toxin in a <scp>pH</scp> â€Independent Manner. Traffic, 2012, 13, 443-454.	1.3	20
120	Hydrophobicity of protein determinants influences the recognition of substrates by EDEM1 and EDEM2 in human cells. BMC Cell Biology, 2015, 16, 1.	3.0	20
121	A vital sugar code for ricin toxicity. Cell Research, 2017, 27, 1351-1364.	5.7	20
122	<p>Paclitaxel-loaded biodegradable ROS-sensitive nanoparticles for cancer therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 6269-6285.	3.3	19
123	Transport of nanoparticles across the endothelial cell layer. Nano Today, 2021, 36, 101029.	6.2	19
124	The Protein Toxins Ricin and Shiga Toxin as Tools to Explore Cellular Mechanisms of Internalization and Intracellular Transport. Toxins, 2021, 13, 377.	1.5	19
125	Interactions between Abrus Lectins and Sephadex Particles Possessing Immobilized Desialylated Fetuin. Model Studies of the Interaction of Lectins with Cell Surface Receptors. FEBS Journal, 1978, 88, 307-313.	0.2	18
126	Marasmius oreades agglutinin (MOA) is a chimerolectin with proteolytic activity. Biochemical and Biophysical Research Communications, 2011, 408, 405-410.	1.0	18

#	Article	IF	CITATIONS
127	The <scp>ERM</scp> Proteins Ezrin and Moesin Regulate Retrograde Shiga Toxin Transport. Traffic, 2013, 14, 839-852.	1.3	18
128	[28] The toxic lectin modeccin. Methods in Enzymology, 1982, 83, 357-362.	0.4	16
129	β-arrestins attenuate p38-mediated endosome to Golgi transport. Cellular Microbiology, 2009, 11, 796-807.	1.1	15
130	Data including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters. Data in Brief, 2016, 7, 1171-1174.	0.5	15
131	Ceramide-containing liposomes with doxorubicin: time and cell-dependent effect of C6 and C12 ceramide. Oncotarget, 2017, 8, 76921-76934.	0.8	15
132	Cell density affects the binding of the toxic lectin abrin to HeLa cells in monolayer cultures. FEBS Letters, 1978, 89, 233-236.	1.3	14
133	Toll-like receptor 4 facilitates binding of Shiga toxin to colon carcinoma and primary umbilical vein endothelial cells. FEMS Immunology and Medical Microbiology, 2011, 61, 63-75.	2.7	14
134	Polyunsaturated fatty acids regulate Shiga toxin transport. Biochemical and Biophysical Research Communications, 2007, 364, 283-288.	1.0	13
135	The role of EDEM2 compared with EDEM1Âin ricin transport from the endoplasmic reticulum to the cytosol. Biochemical Journal, 2014, 457, 485-496.	1.7	13
136	The fungal chimerolectin MOA inhibits protein and DNA synthesis in NIH/3T3 cells and may induce BAX-mediated apoptosis. Biochemical and Biophysical Research Communications, 2014, 447, 586-589.	1.0	13
137	Novel actions of 2-deoxy- <scp>D</scp> -glucose: protection against Shiga toxins and changes in cellular lipids. Biochemical Journal, 2015, 470, 23-37.	1.7	13
138	Apical macropinocytosis in polarized MDCK cells: Regulation by N-ethylmaleimide-sensitive proteins. European Journal of Cell Biology, 2000, 79, 447-457.	1.6	12
139	The ether lipid precursor hexadecylglycerol protects against Shiga toxins. Cellular and Molecular Life Sciences, 2014, 71, 4285-4300.	2.4	12
140	Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding. Scientific Reports, 2016, 6, 30336.	1.6	12
141	Exogenous lysophospholipids with large head groups perturb clathrinâ€mediated endocytosis. Traffic, 2017, 18, 176-191.	1.3	12
142	Transport of apically but not basolaterally internalized ricin to the Golgi apparatus is stimulated by 8-Br-cAMP in MDCK cells. FEBS Letters, 1998, 431, 200-204.	1.3	11
143	The Intracellular Journey of Shiga Toxins~!2009-05-12~!2009-06-03~!2010-03-09~!. The Open Toxinology Journal, 2010, 3, 3-12.	0.9	11
144	Polyporus squamosus Lectin 1a (PSL1a) Exhibits Cytotoxicity in Mammalian Cells by Disruption of Focal Adhesions, Inhibition of Protein Synthesis and Induction of Apoptosis. PLoS ONE, 2017, 12, e0170716.	1.1	10

#	Article	IF	CITATIONS
145	Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids. Biochemical and Biophysical Research Communications, 2005, 329, 465-473.	1.0	9
146	BiP Negatively Affects Ricin Transport. Toxins, 2013, 5, 969-982.	1.5	9
147	Ligand-specific induction of endocytosis in taste receptor cells. Journal of Experimental Biology, 2009, 212, 42-49.	0.8	8
148	The Shiga toxins: properties and action on cells. , 2006, , 310-322.		7
149	Biodistribution of Poly(alkyl cyanoacrylate) Nanoparticles in Mice and Effect on Tumor Infiltration of Macrophages into a Patient-Derived Breast Cancer Xenograft. Nanomaterials, 2021, 11, 1140.	1.9	7
150	Transport of Toxins across Intracellular Membranes. , 0, , 157-172.		7
151	Need for more focus on lipid species in studies of biological and model membranes. Progress in Lipid Research, 2022, 86, 101160.	5.3	7
152	Structural Analysis of Toxin-Neutralizing, Single-Domain Antibodies that Bridge Ricin's A-B Subunit Interface. Journal of Molecular Biology, 2021, 433, 167086.	2.0	6
153	Role of Phospholipase A2 in Retrograde Transport of Ricin. Toxins, 2011, 3, 1203-1219.	1.5	5
154	Benzyl alcohol induces a reversible fragmentation of the Golgi apparatus and inhibits membrane trafficking between endosomes and the trans-Golgi network. Experimental Cell Research, 2017, 357, 67-78.	1.2	5
155	Cabazitaxel-loaded poly(alkyl cyanoacrylate) nanoparticles: Toxicity and changes in the proteome of breast, colon and prostate cancer cells. Nanotoxicology, 2021, 15, 1-20.	1.6	5
156	Diacylglycerol kinase and phospholipase D inhibitors alter the cellular lipidome and endosomal sorting towards the Golgi apparatus. Cellular and Molecular Life Sciences, 2021, 78, 985-1009.	2.4	5
157	Structural Variants of poly(alkylcyanoacrylate) Nanoparticles Differentially Affect LC3 and Autophagic Cargo Degradation. Journal of Biomedical Nanotechnology, 2020, 16, 432-445.	0.5	5
158	Cellular effects of fluorodeoxyglucose: Global changes in the lipidome and alteration in in intracellular transport. Oncotarget, 2016, 7, 79885-79900.	0.8	5
159	Shiga toxins and their mechanisms of cell entry. Topics in Current Genetics, 2004, , 35-53.	0.7	3
160	Reconstitution of active diphtheria toxin based on a hexahistidine tagged version of the B-fragment produced to high yields in bacteria. Toxicon, 2005, 46, 900-906.	0.8	3
161	Viruses in camouflage. Nature, 2008, 453, 466-467.	13.7	3
162	Vps11, a subunit of the tethering complexes HOPS and CORVET, is involved in regulation of glycolipid degradation and retrograde toxin transport. Communicative and Integrative Biology, 2014, 7, e28129.	0.6	3

#	Article	IF	CITATIONS
163	Different roles of the C-terminal end of Stx1A and Stx2A for AB5complex integrity and retrograde transport of Stx in HeLa cells. Pathogens and Disease, 2015, 73, ftv083.	0.8	3
164	Geldanamycin Enhances Retrograde Transport of Shiga Toxin in HEp-2 Cells. PLoS ONE, 2015, 10, e0129214.	1.1	3
165	Quantum dot bioconjugates: uptake into cells and induction of changes in normal cellular transport. , 2009, , .		2
166	Mass spectrometry-based measurements of cyclic adenosine monophosphate in cells, simplified using reversed phase liquid chromatography with a polar characterized stationary phase. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1160, 122384.	1.2	2
167	Shiga toxins. , 2015, , 267-286.		1
168	Cellular uptake of nanoparticles: Involvement of caveolae?. Precision Nanomedicine, 2021, 4, .	0.4	1
169	Modulation of Ricin Intoxication by the Autophagy Inhibitor EACC. Toxins, 2022, 14, 360.	1.5	1
170	Entry of Shiga toxin into cells. Toxicology Letters, 2009, 189, S20.	0.4	0