Markus J Buehler

List of Publications by Citations

Source: https://exaly.com/author-pdf/4394234/markus-j-buehler-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

501	28,455	88	150
papers	citations	h-index	g-index
564 ext. papers	32,889 ext. citations	8.1 avg, IF	7.94 L-index

#	Paper	IF	Citations
501	Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. <i>Nature Materials</i> , 2010 , 9, 359-67	27	916
500	Current issues in research on structureBroperty relationships in polymer nanocomposites. <i>Polymer</i> , 2010 , 51, 3321-3343	3.9	673
499	Multifunctionality and control of the crumpling and unfolding of large-area graphene. <i>Nature Materials</i> , 2013 , 12, 321-5	27	641
498	Nanomechanics of functional and pathological amyloid materials. <i>Nature Nanotechnology</i> , 2011 , 6, 469-	72 8.7	590
497	A realistic molecular model of cement hydrates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 16102-7	11.5	547
496	Merger of structure and material in nacre and bone Perspectives on de novo biomimetic materials. <i>Progress in Materials Science</i> , 2009 , 54, 1059-1100	42.2	546
495	Nature designs tough collagen: explaining the nanostructure of collagen fibrils. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 12285-90	11.5	538
494	On the Mechanistic Origins of Toughness in Bone. <i>Annual Review of Materials Research</i> , 2010 , 40, 25-53	12.8	451
493	Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. <i>Nano Letters</i> , 2011 , 11, 757-66	11.5	442
492	Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy. <i>Accounts of Chemical Research</i> , 2014 , 47, 3541-50	24.3	402
491	Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. <i>ACS Nano</i> , 2012 , 6, 2008-19	16.7	361
490	Nonlinear material behaviour of spider silk yields robust webs. <i>Nature</i> , 2012 , 482, 72-6	50.4	322
489	Structure and mechanics of interfaces in biological materials. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	319
488	Mechanical properties of graphyne. <i>Carbon</i> , 2011 , 49, 4111-4121	10.4	314
487	Nanofibrils in nature and materials engineering. <i>Nature Reviews Materials</i> , 2018 , 3,	73.3	304
486	Molecular mechanics of mineralized collagen fibrils in bone. <i>Nature Communications</i> , 2013 , 4, 1724	17.4	302
485	Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. <i>Nano Letters</i> , 2010 , 10, 2626-34	11.5	301

(2018-2009)

484	Deformation and failure of protein materials in physiologically extreme conditions and disease. <i>Nature Materials</i> , 2009 , 8, 175-88	27	270
483	Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2008 , 1, 59-67	4.1	269
482	Combinatorial molecular optimization of cement hydrates. <i>Nature Communications</i> , 2014 , 5, 4960	17.4	260
481	Hyperelasticity governs dynamic fracture at a critical length scale. <i>Nature</i> , 2003 , 426, 141-6	50.4	256
480	Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing. <i>Advanced Functional Materials</i> , 2013 , 23, 4629-4638	15.6	252
479	The mechanics and design of a lightweight three-dimensional graphene assembly. <i>Science Advances</i> , 2017 , 3, e1601536	14.3	250
478	Plasticity and toughness in bone. <i>Physics Today</i> , 2009 , 62, 41-47	0.9	238
477	Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and self-assembly. <i>Journal of Materials Research</i> , 2006 , 21, 1947-1961	2.5	217
476	Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. <i>Nanotechnology</i> , 2007 , 18, 295102	3.4	216
475	Dynamical fracture instabilities due to local hyperelasticity at crack tips. <i>Nature</i> , 2006 , 439, 307-10	50.4	216
474	Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015 , 52, 1-1	13 ^{4.1}	205
473	Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls. <i>ACS Nano</i> , 2010 , 4, 3869-76	16.7	203
472	Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. <i>Nano Letters</i> , 2011 , 11, 5038-46	11.5	195
471	Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. <i>Physical Review Letters</i> , 2006 , 96, 095505	7.4	194
470	Fracture mechanics of protein materials. <i>Materials Today</i> , 2007 , 10, 46-58	21.8	189
469	Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. <i>Materials Horizons</i> , 2018 , 5, 939-945	14.4	186
468	Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. <i>Nano Letters</i> , 2008 , 8, 743-8	11.5	183
467	Biopolymer nanofibrils: structure, modeling, preparation, and applications. <i>Progress in Polymer Science</i> , 2018 , 85, 1-56	29.6	183

466	Nanoengineering heat transfer performance at carbon nanotube interfaces. ACS Nano, 2009, 3, 2767-75	516.7	181
465	Nanostructure and molecular mechanics of spider dragline silk protein assemblies. <i>Journal of the Royal Society Interface</i> , 2010 , 7, 1709-21	4.1	178
464	Interface structure and mechanics between graphene and metal substrates: a first-principles study. Journal of Physics Condensed Matter, 2010 , 22, 485301	1.8	169
463	Selective hydrogen purification through graphdiyne under ambient temperature and pressure. <i>Nanoscale</i> , 2012 , 4, 4587-93	7.7	167
462	Design and function of biomimetic multilayer water purification membranes. <i>Science Advances</i> , 2017 , 3, e1601939	14.3	161
461	Meso-origami: Folding multilayer graphene sheets. <i>Applied Physics Letters</i> , 2009 , 95, 123121	3.4	161
460	De novo composite design based on machine learning algorithm. <i>Extreme Mechanics Letters</i> , 2018 , 18, 19-28	3.9	160
459	Hierarchically Enhanced Impact Resistance of Bioinspired Composites. <i>Advanced Materials</i> , 2017 , 29, 1700060	24	159
458	Polymorphic regenerated silk fibers assembled through bioinspired spinning. <i>Nature Communications</i> , 2017 , 8, 1387	17.4	158
457	Entropic elasticity controls nanomechanics of single tropocollagen molecules. <i>Biophysical Journal</i> , 2007 , 93, 37-43	2.9	156
456	Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 16410-5	11.5	155
455	Structure-function-property-design interplay in biopolymers: spider silk. <i>Acta Biomaterialia</i> , 2014 , 10, 1612-26	10.8	151
454	First-Principles Study of Elastic Constants and Interlayer Interactions of Complex Hydrated Oxides: Case Study of Tobermorite and Jennite. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 2323-2330	3.8	150
453	Tearing graphene sheets from adhesive substrates produces tapered nanoribbons. <i>Small</i> , 2010 , 6, 1108	-16	144
452	Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture. <i>Progress in Materials Science</i> , 2008 , 53, 1101-1241	42.2	144
45 ¹	Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding, and fracture. Journal of Materials Research, 2006 , 21, 2855-2869	2.5	142
450	Hydration of calcium oxide surface predicted by reactive force field molecular dynamics. <i>Langmuir</i> , 2012 , 28, 4187-97	4	139
449	Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. Journal of the Mechanical Behavior of Biomedical Materials, 2009 , 2, 130-7	4.1	138

(2015-2011)

448	Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. <i>Scientific Reports</i> , 2011 , 1, 35	4.9	135
447	Extended graphynes: simple scaling laws for stiffness, strength and fracture. <i>Nanoscale</i> , 2012 , 4, 7797-8	8 9 97	131
446	Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. <i>PLoS ONE</i> , 2009 , 4, e7294	3.7	129
445	Paraffin-enabled graphene transfer. <i>Nature Communications</i> , 2019 , 10, 867	17.4	122
444	Self-assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: experiment, simulation, and design. <i>ACS Nano</i> , 2013 , 7, 1524-32	16.7	122
443	Deposition Mechanism and Properties of Thin Polydopamine Films for High Added Value Applications in Surface Science at the Nanoscale. <i>BioNanoScience</i> , 2012 , 2, 16-34	3.4	118
442	Osmotic pressure induced tensile forces in tendon collagen. <i>Nature Communications</i> , 2015 , 6, 5942	17.4	117
441	Liquid Exfoliated Natural Silk Nanofibrils: Applications in Optical and Electrical Devices. <i>Advanced Materials</i> , 2016 , 28, 7783-90	24	115
440	Protective role of Arapaima gigas fish scales: structure and mechanical behavior. <i>Acta Biomaterialia</i> , 2014 , 10, 3599-614	10.8	115
439	Strain controlled thermomutability of single-walled carbon nanotubes. <i>Nanotechnology</i> , 2009 , 20, 1857	' 0 3.4	115
438	Ultrathin Free-Standing Bombyx mori Silk Nanofibril Membranes. <i>Nano Letters</i> , 2016 , 16, 3795-800	11.5	113
437	Viscoelastic properties of model segments of collagen molecules. <i>Matrix Biology</i> , 2012 , 31, 141-9	11.4	112
436	Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides. <i>Nature Communications</i> , 2017 , 8, 14913	17.4	111
435	Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification. <i>Nanoscale</i> , 2013 , 5, 11801-7	7.7	111
434	Polydopamine and eumelanin molecular structures investigated with calculations. <i>Chemical Science</i> , 2017 , 8, 1631-1641	9.4	111
433	Ultrathin thermoresponsive self-folding 3D graphene. <i>Science Advances</i> , 2017 , 3, e1701084	14.3	110
432	Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. <i>Advanced Functional Materials</i> , 2018 , 28, 1705291	15.6	109
431	Structural optimization of 3D-printed synthetic spider webs for high strength. <i>Nature Communications</i> , 2015 , 6, 7038	17.4	107

430	Molecular dynamics simulation of the Helix to Bheet transition in coiled protein filaments: evidence for a critical filament length scale. <i>Physical Review Letters</i> , 2010 , 104, 198304	7.4	107
429	Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin. <i>Nature Communications</i> , 2014 , 5, 3859	17.4	106
428	Alzheimer's abeta(1-40) amyloid fibrils feature size-dependent mechanical properties. <i>Biophysical Journal</i> , 2010 , 98, 2053-62	2.9	106
427	Threshold crack speed controls dynamical fracture of silicon single crystals. <i>Physical Review Letters</i> , 2007 , 99, 165502	7.4	106
426	Tu(r)ning weakness to strength. <i>Nano Today</i> , 2010 , 5, 379-383	17.9	100
425	Packing efficiency and accessible surface area of crumpled graphene. <i>Physical Review B</i> , 2011 , 84,	3.3	99
424	Molecular and mesoscale mechanisms of osteogenesis imperfecta disease in collagen fibrils. Biophysical Journal, 2009 , 97, 857-65	2.9	99
423	Bone-Inspired Materials by Design: Toughness Amplification Observed Using 3D Printing and Testing . <i>Advanced Engineering Materials</i> , 2016 , 18, 1354-1363	3.5	99
422	Deformation Mechanisms of Very Long Single-Wall Carbon Nanotubes Subject to Compressive Loading. <i>Journal of Engineering Materials and Technology, Transactions of the ASME</i> , 2004 , 126, 245-249	1.8	97
421	Structural solution using molecular dynamics: Fundamentals and a case study of epoxy-silica interface. <i>International Journal of Solids and Structures</i> , 2011 , 48, 2131-2140	3.1	96
420	Deformation micromechanisms of collagen fibrils under uniaxial tension. <i>Journal of the Royal Society Interface</i> , 2010 , 7, 839-50	4.1	96
419	Molecular mechanics of polycrystalline graphene with enhanced fracture toughness. <i>Extreme Mechanics Letters</i> , 2015 , 2, 52-59	3.9	94
418	The Rise of Hierarchical Nanostructured Materials from Renewable Sources: Learning from Nature. <i>ACS Nano</i> , 2018 , 12, 7425-7433	16.7	91
417	Atomically Sharp Crack Tips in Monolayer MoS and Their Enhanced Toughness by Vacancy Defects. <i>ACS Nano</i> , 2016 , 10, 9831-9839	16.7	91
416	Materiomics: an -omics approach to biomaterials research. <i>Advanced Materials</i> , 2013 , 25, 802-24	24	90
415	High-Strength, Durable All-Silk Fibroin Hydrogels with Versatile Processability toward Multifunctional Applications. <i>Advanced Functional Materials</i> , 2018 , 28, 1704757	15.6	89
414	Structural and mechanical differences between collagen homo- and heterotrimers: relevance for the molecular origin of brittle bone disease. <i>Biophysical Journal</i> , 2012 , 102, 640-8	2.9	89
413	Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. <i>Soft Matter</i> , 2014 , 10, 4436-42	3.6	87

(2018-2015)

412	Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. <i>Nature Communications</i> , 2015 , 6, 6892	17.4	86
411	Twisted and coiled ultralong multilayer graphene ribbons. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2011 , 19, 054003	2	86
410	Age- and diabetes-related nonenzymatic crosslinks in collagen fibrils: candidate amino acids involved in Advanced Glycation End-products. <i>Matrix Biology</i> , 2014 , 34, 89-95	11.4	85
409	Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface. <i>Langmuir</i> , 2012 , 28, 1982-92	4	85
408	Printing nature: Unraveling the role of nacre's mineral bridges. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2017 , 76, 135-144	4.1	84
407	Atomistic simulation of nanomechanical properties of Alzheimer's Abeta(1-40) amyloid fibrils under compressive and tensile loading. <i>Journal of Biomechanics</i> , 2010 , 43, 1196-201	2.9	82
406	Bio-inspired carbon nanotube-polymer composite yarns with hydrogen bond-mediated lateral interactions. <i>ACS Nano</i> , 2013 , 7, 3434-46	16.7	81
405	Biomimetic additive manufactured polymer composites for improved impact resistance. <i>Extreme Mechanics Letters</i> , 2016 , 9, 317-323	3.9	81
404	Printing of stretchable silk membranes for strain measurements. <i>Lab on A Chip</i> , 2016 , 16, 2459-66	7.2	80
403	Coarse-Grained Model of Collagen Molecules Using an Extended MARTINI Force Field. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 1210-1218	6.4	80
402	Mechanical exfoliation of two-dimensional materials. <i>Journal of the Mechanics and Physics of Solids</i> , 2018 , 115, 248-262	5	78
401	Mechanomutable properties of a PAA/PAH polyelectrolyte complex: rate dependence and ionization effects on tunable adhesion strength. <i>Soft Matter</i> , 2010 , 6, 4175	3.6	78
400	Effect of wrinkles on the surface area of graphene: toward the design of nanoelectronics. <i>Nano Letters</i> , 2014 , 14, 6520-5	11.5	77
399	In silico assembly and nanomechanical characterization of carbon nanotube buckypaper. <i>Nanotechnology</i> , 2010 , 21, 265706	3.4	77
398	Atomistic model of the spider silk nanostructure. <i>Applied Physics Letters</i> , 2010 , 96, 153701	3.4	77
397	Cyclic tensile strain triggers a sequence of autocrine and paracrine signaling to regulate angiogenic sprouting in human vascular cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 15279-84	11.5	77
396	The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces. <i>Nanotechnology</i> , 2013 , 24, 165702	3.4	75
395	Sub-nanometre channels embedded in two-dimensional materials. <i>Nature Materials</i> , 2018 , 17, 129-133	27	75

394	Three-Dimensional-Printing of Bio-Inspired Composites. <i>Journal of Biomechanical Engineering</i> , 2016 , 138, 021006	2.1	74
393	Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. <i>Chemical Reviews</i> , 2019 , 119, 12279-12336	68.1	73
392	Advanced Structural Materials by Bioinspiration . <i>Advanced Engineering Materials</i> , 2017 , 19, 1600787	3.5	70
391	Additive Manufacturing Approaches for Hydroxyapatite-Reinforced Composites. <i>Advanced Functional Materials</i> , 2019 , 29, 1903055	15.6	70
390	Mechanism of friction in rotating carbon nanotube bearings. <i>Journal of the Mechanics and Physics of Solids</i> , 2013 , 61, 652-673	5	70
389	Asymptotic strength limit of hydrogen-bond assemblies in proteins at vanishing pulling rates. <i>Physical Review Letters</i> , 2008 , 100, 198301	7.4	70
388	Tensan Silk-Inspired Hierarchical Fibers for Smart Textile Applications. ACS Nano, 2018, 12, 6968-6977	16.7	69
387	Molecular biomechanics of collagen molecules. <i>Materials Today</i> , 2014 , 17, 70-76	21.8	69
386	Spider dragline silk as torsional actuator driven by humidity. Science Advances, 2019, 5, eaau9183	14.3	68
385	The minimal nanowire: Mechanical properties of carbyne. <i>Europhysics Letters</i> , 2011 , 95, 16002	1.6	68
384	Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue. <i>Journal of the Royal Society Interface</i> , 2014 , 11, 20130835	4.1	66
383	A constitutive model of soft tissue: from nanoscale collagen to tissue continuum. <i>Annals of Biomedical Engineering</i> , 2009 , 37, 1117-30	4.7	65
382	Molecular structure, mechanical behavior and failure mechanism of the C-terminal cross-link domain in type I collagen. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2011 , 4, 153-61	4.1	65
381	Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11196-11205	16.4	64
380	Silk-Its Mysteries, How It Is Made, and How It Is Used. <i>ACS Biomaterials Science and Engineering</i> , 2015 , 1, 864-876	5.5	63
379	A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. <i>Biomaterials</i> , 2012 , 33, 8240-55	15.6	63
378	Sequence-structure correlations in silk: Poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2012 , 7, 30-40	4.1	62
377	Molecular asphaltene models based on Clar sextet theory. <i>RSC Advances</i> , 2015 , 5, 753-759	3.7	61

(2012-2010)

376	A single degree of freedom [bllipop[model for carbon nanotube bundle formation. <i>Journal of the Mechanics and Physics of Solids</i> , 2010 , 58, 409-427	5	61
375	Comparison of synthetic dopamine-eumelanin formed in the presence of oxygen and Cu2+ cations as oxidants. <i>Langmuir</i> , 2013 , 29, 12754-61	4	60
374	Failure of A[1-40) amyloid fibrils under tensile loading. <i>Biomaterials</i> , 2011 , 32, 3367-74	15.6	59
373	Self-folding of single- and multiwall carbon nanotubes. <i>Applied Physics Letters</i> , 2007 , 90, 073107	3.4	58
372	Defect-Tolerant Bioinspired Hierarchical Composites: Simulation and Experiment. <i>ACS Biomaterials Science and Engineering</i> , 2015 , 1, 295-304	5.5	57
371	Molecular deformation mechanisms of the wood cell wall material. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015 , 42, 198-206	4.1	57
370	Impact tolerance in mussel thread networks by heterogeneous material distribution. <i>Nature Communications</i> , 2013 , 4, 2187	17.4	57
369	Cracking and adhesion at small scales: atomistic and continuum studies of flaw tolerant nanostructures. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2006 , 14, 799-816	2	57
368	Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS ONE, 2009, 4, e6015	3.7	57
367	Design of Multistimuli Responsive Hydrogels Using Integrated Modeling and Genetically Engineered Silk-Elastin-Like Proteins. <i>Advanced Functional Materials</i> , 2016 , 26, 4113-4123	15.6	57
366	Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 245301	1.8	56
365	Thermal transport in monolayer graphene oxide: Atomistic insights into phonon engineering through surface chemistry. <i>Carbon</i> , 2014 , 77, 351-359	10.4	55
364	Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies. <i>Journal of Materials Science</i> , 2007 , 42, 8771-8787	4.3	55
363	Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. <i>Nature Communications</i> , 2019 , 10, 1004	17.4	54
362	Influence of geometry on mechanical properties of bio-inspired silica-based hierarchical materials. <i>Bioinspiration and Biomimetics</i> , 2012 , 7, 036024	2.6	54
361	Artificial intelligence and machine learning in design of mechanical materials. <i>Materials Horizons</i> , 2021 , 8, 1153-1172	14.4	54
360	A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence. <i>ACS Nano</i> , 2019 , 13, 7471-7	482	53
359	Hydration and distance dependence of intermolecular shearing between collagen molecules in a model microfibril. <i>Journal of Biomechanics</i> , 2012 , 45, 2079-83	2.9	53

358	A Materiomics Approach to Spider Silk: Protein Molecules to Webs. <i>Jom</i> , 2012 , 64, 214-225	2.1	52
357	Characterization of the intrinsic strength between epoxy and silica using a multiscale approach. Journal of Materials Research, 2012 , 27, 1787-1796	2.5	52
356	The hidden structure of human enamel. <i>Nature Communications</i> , 2019 , 10, 4383	17.4	51
355	Secondary Structure Transition and Critical Stress for a Model of Spider Silk Assembly. <i>Biomacromolecules</i> , 2016 , 17, 427-36	6.9	51
354	Tuning heterogeneous poly(dopamine) structures and mechanics: in silico covalent cross-linking and thin film nanoindentation. <i>Soft Matter</i> , 2014 , 10, 457-64	3.6	51
353	Role of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone. <i>Biomacromolecules</i> , 2014 , 15, 2494-500	6.9	51
352	Molecular mechanism of force induced stabilization of collagen against enzymatic breakdown. <i>Biomaterials</i> , 2012 , 33, 3852-9	15.6	51
351	Mesoscale mechanics of wood cell walls under axial strain. <i>Soft Matter</i> , 2013 , 9, 7138	3.6	51
350	SequenceBtructure P roperty Relationships of Recombinant Spider Silk Proteins: Integration of Biopolymer Design, Processing, and Modeling. <i>Advanced Functional Materials</i> , 2013 , 23, 241-253	15.6	51
349	Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains. <i>Protein Science</i> , 2009 , 18, 161-8	6.3	51
348	Remarkably Distinct Mechanical Flexibility in Three Structurally Similar Semiconducting Organic Crystals Studied by Nanoindentation and Molecular Dynamics. <i>Chemistry of Materials</i> , 2019 , 31, 1391-14	102 ⁶	50
347	Design and Fabrication of Silk Templated Electronic Yarns and Applications in Multifunctional Textiles. <i>Matter</i> , 2019 , 1, 1411-1425	12.7	50
346	Coupled continuum and discrete analysis of random heterogeneous materials: Elasticity and fracture. <i>Journal of the Mechanics and Physics of Solids</i> , 2014 , 63, 481-490	5	50
345	Nanomechanical properties of vimentin intermediate filament dimers. <i>Nanotechnology</i> , 2009 , 20, 42510	03.4	49
344	Atomic plasticity: description and analysis of a one-billion atom simulation of ductile materials failure. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2004 , 193, 5257-5282	5.7	49
343	Protein-free formation of bone-like apatite: New insights into the key role of carbonation. <i>Biomaterials</i> , 2017 , 127, 75-88	15.6	48
342	Molecular mechanics of mussel adhesion proteins. <i>Journal of the Mechanics and Physics of Solids</i> , 2014 , 62, 19-30	5	48
341	A multi-scale approach to understand the mechanobiology of intermediate filaments. <i>Journal of Biomechanics</i> , 2010 , 43, 15-22	2.9	48

340	Atomistic study of crack-tip cleavage to dislocation emission transition in silicon single crystals. <i>Physical Review Letters</i> , 2010 , 104, 235502	7.4	47	
339	Bioinspired nanoporous silicon provides great toughness at great deformability. <i>Computational Materials Science</i> , 2010 , 48, 303-309	3.2	46	
338	Electrospinning Piezoelectric Fibers for Biocompatible Devices. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1901287	10.1	46	
337	Optimization of Composite Fracture Properties: Method, Validation, and Applications. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2016 , 83,	2.7	46	
336	Intercalated water layers promote thermal dissipation at bio-nano interfaces. <i>Nature Communications</i> , 2016 , 7, 12854	17.4	45	
335	Tunable nanomechanics of protein disulfide bonds in redox microenvironments. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2012 , 5, 32-40	4.1	45	
334	Molecular mechanics of silk nanostructures under varied mechanical loading. <i>Biopolymers</i> , 2012 , 97, 408	3- <u>1</u> .7	44	
333	Self-folding and aggregation of amyloid nanofibrils. <i>Nanoscale</i> , 2011 , 3, 1748-55	7.7	44	
332	Synergetic material and structure optimization yields robust spider web anchorages. Small, 2013, 9, 274	71-56	43	
331	Set in stone? A perspective on the concrete sustainability challenge. MRS Bulletin, 2012, 37, 395-402	3.2	42	
330	Biomateriomics. Springer Series in Materials Science, 2012,	0.9	42	
329	A robust nanoscale experimental quantification of fracture energy in a bilayer material system. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 11990-5	11.5	41	
328	Intermediate filament-deficient cells are mechanically softer at large deformation: a multi-scale simulation study. <i>Acta Biomaterialia</i> , 2010 , 6, 2457-66	10.8	41	
327	Atomistic and continuum studies of crack-like diffusion wedges and associated dislocation mechanisms in thin films on substrates. <i>Journal of the Mechanics and Physics of Solids</i> , 2003 , 51, 2105-21	<i>2</i> 5	41	
326	Atomistic Investigation of Load Transfer Between DWNT Bundles Crosslinked by PMMA Oligomers. <i>Advanced Functional Materials</i> , 2013 , 23, 1883-1892	15.6	40	
325	Mutations alter the geometry and mechanical properties of Alzheimer's A[11-40) amyloid fibrils. <i>Biochemistry</i> , 2010 , 49, 8967-77	3.2	40	
324	Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content. <i>Journal of Bone and Mineral Research</i> , 2016 , 31, 380-90	6.3	40	
323	Computational smart polymer design based on elastin protein mutability. <i>Biomaterials</i> , 2017 , 127, 49-60	15.6	39	

322	Variation of Weak Polyelectrolyte Persistence Length through an Electrostatic Contour Length. <i>Macromolecules</i> , 2012 , 45, 8067-8082	5.5	39
321	Nanoindentation study of size effects in nickelgraphene nanocomposites. <i>Philosophical Magazine Letters</i> , 2013 , 93, 196-203	1	39
320	Heat dissipation at a graphene-substrate interface. Journal of Physics Condensed Matter, 2012, 24, 47530	0<u>6</u>8	39
319	Using Deep Learning to Predict Fracture Patterns in Crystalline Solids. <i>Matter</i> , 2020 , 3, 197-211	12.7	39
318	Multiscale Mechanics of Triply Periodic Minimal Surfaces of Three-Dimensional Graphene Foams. <i>Nano Letters</i> , 2018 , 18, 4845-4853	11.5	39
317	Nanoconfinement and the strength of biopolymers. <i>Annual Review of Biophysics</i> , 2013 , 42, 651-73	21.1	38
316	Structure and stability of the lamin A tail domain and HGPS mutant. <i>Journal of Structural Biology</i> , 2011 , 175, 425-33	3.4	38
315	Materiomics: biological protein materials, from nano to macro. <i>Nanotechnology, Science and Applications</i> , 2010 , 3, 127-48	3.9	38
314	Atomistic and continuum studies of stress and strain fields near a rapidly propagating crack in a harmonic lattice. <i>Theoretical and Applied Fracture Mechanics</i> , 2004 , 41, 21-42	3.7	38
313	Nonlinear Viscous Water at Nanoporous Two-Dimensional Interfaces Resists High-Speed Flow through Cooperativity. <i>Nano Letters</i> , 2015 , 15, 3939-44	11.5	37
312	Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model. Journal of the Royal Society Interface, 2015 , 12, 20150701	4.1	37
311	Mesoscale mechanics of twisting carbon nanotube yarns. <i>Nanoscale</i> , 2015 , 7, 5435-45	7.7	37
310	Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. <i>Nature Reviews Materials</i> , 2021 , 6, 421-436	73.3	37
309	Nanomechanics of silk: the fundamentals of a strong, tough and versatile material. <i>Nanotechnology</i> , 2016 , 27, 302001	3.4	36
308	Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2011 , 42, 3889-3897	2.3	36
307	Bioinspired noncovalently crosslinked f uzzyltarbon nanotube bundles with superior toughness and strength. <i>Journal of Materials Chemistry</i> , 2010 , 20, 10465		36
306	Colloquium: Failure of molecules, bones, and the Earth itself. <i>Reviews of Modern Physics</i> , 2010 , 82, 1459-	-14487	36
305	Self-Folding Hybrid Graphene Skin for 3D Biosensing. <i>Nano Letters</i> , 2019 , 19, 1409-1417	11.5	36

(2014-2016)

304	Aqueous Peptide-TiO2 Interfaces: Isoenergetic Binding via Either Entropically or Enthalpically Driven Mechanisms. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 18620-30	9.5	35
303	Elasticity, strength and resilience: A comparative study on mechanical signatures of Helix, Bheet and tropocollagen domains. <i>Nano Research</i> , 2008 , 1, 63-71	10	35
302	Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials. <i>Accounts of Chemical Research</i> , 2017 , 50, 866-876	24.3	34
301	Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly. <i>Science Advances</i> , 2016 , 2, e1501145	14.3	34
300	Structure and mechanical properties of human trichocyte keratin intermediate filament protein. <i>Biomacromolecules</i> , 2012 , 13, 3522-32	6.9	34
299	Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals. <i>Physical Review E</i> , 2010 , 82, 061906	2.4	34
298	Flaw tolerance of nuclear intermediate filament lamina under extreme mechanical deformation. <i>ACS Nano</i> , 2011 , 5, 3034-42	16.7	34
297	Self-Folding and Unfolding of Carbon Nanotubes. <i>Journal of Engineering Materials and Technology, Transactions of the ASME</i> , 2006 , 128, 3-10	1.8	34
296	Roadmap across the mesoscale for durable and sustainable cement paste [A bioinspired approach. <i>Construction and Building Materials</i> , 2016 , 115, 13-31	6.7	34
295	Reversible MoS Origami with Spatially Resolved and Reconfigurable Photosensitivity. <i>Nano Letters</i> , 2019 , 19, 7941-7949	11.5	33
294	Algorithm-driven design of fracture resistant composite materials realized through additive manufacturing. <i>Additive Manufacturing</i> , 2017 , 17, 47-54	6.1	33
293	Unusually low and density-insensitive thermal conductivity of three-dimensional gyroid graphene. <i>Nanoscale</i> , 2017 , 9, 13477-13484	7.7	33
292	Hierarchical simulations for the design of supertough nanofibers inspired by spider silk. <i>Physical Review E</i> , 2010 , 82, 056103	2.4	33
291	Microscale structural model of Alzheimer Aប្រាឱ០) amyloid fibril. <i>Applied Physics Letters</i> , 2009 , 94, 243904	43.4	33
290	Alport syndrome mutations in type IV tropocollagen alter molecular structure and nanomechanical properties. <i>Journal of Structural Biology</i> , 2009 , 168, 503-10	3.4	33
289	Synergistic Roll-to-Roll Transfer and Doping of CVD-Graphene Using Parylene for Ambient-Stable and Ultra-Lightweight Photovoltaics. <i>Advanced Functional Materials</i> , 2020 , 30, 2001924	15.6	32
288	What's inside the box? - Length-scales that govern fracture processes of polymer fibers. <i>Advanced Materials</i> , 2014 , 26, 412-7	24	32
287	Tensile deformation and failure of amyloid and amyloid-like protein fibrils. <i>Nanotechnology</i> , 2014 , 25, 105703	3.4	32

286	ROBUSTNESS-STRENGTH PERFORMANCE OF HIERARCHICAL ALPHA-HELICAL PROTEIN FILAMENTS. <i>International Journal of Applied Mechanics</i> , 2009 , 01, 85-112	2.4	32
285	Strength limit of entropic elasticity in beta-sheet protein domains. <i>Physical Review E</i> , 2008 , 78, 061913	2.4	32
284	Topology Optimization of Smart Structures Using a Homogenization Approach. <i>Journal of Intelligent Material Systems and Structures</i> , 2004 , 15, 655-667	2.3	32
283	Unraveling the Molecular Requirements for Macroscopic Silk Supercontraction. ACS Nano, 2017, 11, 975	9 .7 5	831
282	Atomistic study of the effect of crack tip ledges on the nucleation of dislocations in silicon single crystals at elevated temperature. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2011 , 528, 4357-4364	5.3	31
281	The relationship of functional return to varying methods of nerve repair. <i>Journal of Reconstructive Microsurgery</i> , 1990 , 6, 61-9	2.5	31
2 80	Category theoretic analysis of hierarchical protein materials and social networks. <i>PLoS ONE</i> , 2011 , 6, e23911	3.7	31
279	Deep learning model to predict complex stress and strain fields in hierarchical composites. <i>Science Advances</i> , 2021 , 7,	14.3	31
278	Mechanical behavior of nanocomposites. MRS Bulletin, 2019, 44, 19-24	3.2	31
277	Nacre-inspired design of graphene oxidepolydopamine nanocomposites for enhanced mechanical properties and multi-functionalities. <i>Nano Futures</i> , 2017 , 1, 011003	3.6	30
276	Interlocking Friction Governs the Mechanical Fracture of Bilayer MoS. ACS Nano, 2018, 12, 3600-3608	16.7	30
275	Materials by Design: Merging Proteins and Music. <i>Nano Today</i> , 2012 , 7, 488-495	17.9	30
274	Nanomechanical sequencing of collagen: tropocollagen features heterogeneous elastic properties at the nanoscale. <i>Integrative Biology (United Kingdom)</i> , 2009 , 1, 452-9	3.7	30
273	The strength limit in a bio-inspired metallic nanocomposite. <i>Journal of the Mechanics and Physics of Solids</i> , 2008 , 56, 1086-1104	5	30
272	Mechanics of collagenBydroxyapatite model nanocomposites. <i>Mechanics Research Communications</i> , 2014 , 58, 17-23	2.2	29
271	Effect of sodium chloride on the structure and stability of spider silk's N-terminal protein domain. <i>Biomaterials Science</i> , 2013 , 1, 276-284	7.4	29
270	Molecular mechanics of elastic and bendable caffeine co-crystals. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 13165-71	3.6	29
269	Tough and stiff composites with simple building blocks. <i>Journal of Materials Research</i> , 2013 , 28, 1295-13	3035	29

(2007-2009)

268	Hierarchical nanostructures are crucial to mitigate ultrasmall thermal point loads. <i>Nano Letters</i> , 2009 , 9, 2065-72	11.5	29
267	Artificial intelligence design algorithm for nanocomposites optimized for shear crack resistance. <i>Nano Futures</i> , 2019 , 3, 035001	3.6	28
266	Comparative analysis of nanomechanics of protein filaments under lateral loading. <i>Nanoscale</i> , 2012 , 4, 1177-83	7.7	28
265	The role of capture spiral silk properties in the diversification of orb webs. <i>Journal of the Royal Society Interface</i> , 2012 , 9, 3240-8	4.1	28
264	Conductive Silk-Based Composites Using Biobased Carbon Materials. <i>Advanced Materials</i> , 2019 , 31, e190	0 <u>4</u> 720	26
263	Vascularized free tissue transfer for reconstruction of ablative defects in oral and oropharyngeal cancer patients undergoing salvage surgery following concomitant chemoradiation. <i>International Journal of Oral and Maxillofacial Surgery</i> , 2012 , 41, 733-8	2.9	26
262	Fracture mechanics of hydroxyapatite single crystals under geometric confinement. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2013 , 20, 184-91	4.1	26
261	Large deformation and fracture mechanics of a beta-helical protein nanotube: Atomistic and continuum modeling. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2008 , 197, 3203-3214	5.7	26
260	Molecular model of human tropoelastin and implications of associated mutations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 7338-7343	11.5	26
259	Intracellular Pathways Involved in Bone Regeneration Triggered by Recombinant Silk-silica Chimeras. <i>Advanced Functional Materials</i> , 2018 , 28, 1702570	15.6	26
258	Reoccurring Patterns in Hierarchical Protein Materials and Music: The Power of Analogies. <i>BioNanoScience</i> , 2011 , 1, 153-161	3.4	25
257	Mechanical energy transfer and dissipation in fibrous beta-sheet-rich proteins. <i>Physical Review E</i> , 2010 , 81, 061910	2.4	25
256	Hierarchical chemo-nanomechanics of proteins: entropic elasticity, protein unfolding and molecular fracture. <i>Journal of Mechanics of Materials and Structures</i> , 2007 , 2, 1019-1057	1.2	25
255	Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains. <i>ACS Applied Materials & Domains. ACS Applied Materials & Domains. ACS Applied Materials & Domains & Domain</i>	9.5	24
254	Solving the Controversy on the Wetting Transparency of Graphene. Scientific Reports, 2015, 5, 15526	4.9	24
253	Molecular mechanics of dihydroxyphenylalanine at a silica interface. <i>Applied Physics Letters</i> , 2012 , 101, 083702	3.4	24
252	Nanomechanical strength mechanisms of hierarchical biological materials and tissues. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2008 , 11, 595-607	2.1	24
251	Nano- and micromechanical properties of hierarchical biological materials and tissues. <i>Journal of Materials Science</i> , 2007 , 42, 8765-8770	4.3	24

250	Evidence of the most stretchable egg sac silk stalk, of the European spider of the year Meta menardi. <i>PLoS ONE</i> , 2012 , 7, e30500	3.7	24
249	Multiscale Modeling of Muscular-Skeletal Systems. <i>Annual Review of Biomedical Engineering</i> , 2017 , 19, 435-457	12	23
248	Materials-by-Design: Computation, Synthesis, and Characterization from Atoms to Structures. <i>Physica Scripta</i> , 2018 , 93,	2.6	23
247	Effect of sequence features on assembly of spider silk block copolymers. <i>Journal of Structural Biology</i> , 2014 , 186, 412-9	3.4	23
246	Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties. <i>Nanotechnology</i> , 2009 , 20, 375704	3.4	23
245	Alpha-helical protein domains unify strength and robustness through hierarchical nanostructures. <i>Nanotechnology</i> , 2009 , 20, 075103	3.4	23
244	Multiscale mechanics of biological and biologically inspired materials and structures. <i>Acta Mechanica Solida Sinica</i> , 2010 , 23, 471-483	2	23
243	The dynamical complexity of work-hardening: a large-scale molecular dynamics simulation. <i>Acta Mechanica Sinica/Lixue Xuebao</i> , 2005 , 21, 103-111	2	23
242	Multiscale Modeling of Silk and Silk-Based Biomaterials-A Review. <i>Macromolecular Bioscience</i> , 2019 , 19, e1800253	5.5	23
241	Combining In Silico Design and Biomimetic Assembly: A New Approach for Developing High-Performance Dynamic Responsive Bio-Nanomaterials. <i>Advanced Materials</i> , 2018 , 30, e1802306	24	23
240	Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 1542-1556	5.5	22
239	Materials by Design-A Perspective From Atoms to Structures. MRS Bulletin, 2013, 38, 169-176	3.2	22
238	ATOMISTICALLY-INFORMED MESOSCALE MODEL OF DEFORMATION AND FAILURE OF BIOINSPIRED HIERARCHICAL SILICA NANOCOMPOSITES. <i>International Journal of Applied Mechanics</i> , 2010 , 02, 699-717	2.4	22
237	Imaging and analysis of a three-dimensional spider web architecture. <i>Journal of the Royal Society Interface</i> , 2018 , 15,	4.1	22
236	Multiscale Design of Graphyne-Based Materials for High-Performance Separation Membranes. <i>Advanced Materials</i> , 2019 , 31, e1805665	24	21
235	Structure and dynamics of human vimentin intermediate filament dimer and tetramer in explicit and implicit solvent models. <i>Journal of Molecular Modeling</i> , 2011 , 17, 37-48	2	21
234	Hierarchical multi-scale modelling of plasticity of submicron thin metal films. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2004 , 12, S391-S413	2	21
233	Serratus fascia "sandwich" free-tissue transfer for complex dorsal hand and wrist avulsion injuries. Journal of Reconstructive Microsurgery, 1999 , 15, 315-20	2.5	21

232	Mechanics of fragmentation of crocodile skin and other thin films. Scientific Reports, 2014, 4, 4966	4.9	20
231	Spider silk: Dynamic mechanics. <i>Nature Materials</i> , 2016 , 15, 1054-5	27	20
230	Intermolecular slip mechanism in tropocollagen nanofibrils. <i>International Journal of Materials Research</i> , 2009 , 100, 921-925	0.5	20
229	Mechanomutable carbon nanotube arrays. <i>International Journal of Materials and Structural Integrity</i> , 2009 , 3, 161	0.3	20
228	Molecular architecture of collagen fibrils: A critical length scale for tough fibrils. <i>Current Applied Physics</i> , 2008 , 8, 440-442	2.6	20
227	Accumulation of collagen molecular unfolding is the mechanism of cyclic fatigue damage and failure in collagenous tissues. <i>Science Advances</i> , 2020 , 6, eaba2795	14.3	20
226	Multiscale modeling of keratin, collagen, elastin and related human diseases: Perspectives from atomistic to coarse-grained molecular dynamics simulations. <i>Extreme Mechanics Letters</i> , 2018 , 20, 112-1	² 4 ⁹	19
225	Coiled-coil intermediate filament stutter instability and molecular unfolding. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2011 , 14, 483-9	2.1	19
224	Large-Scale Hierarchical Molecular Modeling of Nanostructured Biological Materials. <i>Journal of Computational and Theoretical Nanoscience</i> , 2006 , 3, 603-623	0.3	19
223	Optimal sensor design and control of piezoelectric laminate beams. <i>IEEE Transactions on Control Systems Technology</i> , 2004 , 12, 148-155	4.8	19
222	Polydopamine and eumelanin models in various oxidation states. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 28135-28143	3.6	19
221	Molecular mechanics and performance of crosslinked amorphous polymer adhesives. <i>Journal of Materials Research</i> , 2014 , 29, 1077-1085	2.5	18
220	Mechanics of Nano-Honeycomb Silica Structures: Size-Dependent Brittle-to-Ductile Transition. Journal of Nanomechanics & Micromechanics, 2011 , 1, 112-118		18
219	Graphene Nanocutting Through Nanopatterned Vacancy Defects. <i>Journal of Computational and Theoretical Nanoscience</i> , 2010 , 7, 354-359	0.3	18
218	Comparative Study of Polymorphous Alzheimer's A[11-40) Amyloid Nanofibrils and Microfibers. Journal of Computational and Theoretical Nanoscience, 2010 , 7, 1279-1286	0.3	18
217	Hierarchical Coexistence of Universality and Diversity Controls Robustness and Multi-Functionality in Protein Materials. <i>Journal of Computational and Theoretical Nanoscience</i> , 2008 , 5, 1193-1204	0.3	18
216	Fabrication and Characterization of Recombinant Silk-Elastin-Like-Protein (SELP) Fiber. <i>Macromolecular Bioscience</i> , 2018 , 18, e1800265	5.5	18
215	Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling. <i>Biomaterials</i> , 2016 , 107, 15-22	15.6	17

Conformation Transitions of Recombinant Spidroins via Integration of Time-Resolved FTIR 214 Spectroscopy and Molecular Dynamic Simulation. ACS Biomaterials Science and Engineering, **2016**, 2, $1298 \div 1308^{17}$ Biological materials by design. Journal of Physics Condensed Matter, 2014, 26, 073101 1.8 213 17 Structure and mechanism of maximum stability of isolated alpha-helical protein domains at a 212 1.5 17 critical length scale. European Physical Journal E, 2013, 36, 53 Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear 211 17.4 17 lamina. Nature Communications, 2020, 11, 6205 Modeling and Experiment Reveal Structure and Nanomechanics across the Inverse Temperature 210 16 Transition in Silk-Elastin-like Protein Polymers. ACS Biomaterials Science and Engineering, 2017, 3, 2889-2899 Sonification based protein design using artificial intelligence, structure prediction, and analysis 6.6 16 209 using molecular modeling. APL Bioengineering, 2020, 4, 016108 Artificial intelligence method to design and fold alpha-helical structural proteins from the primary 208 16 3.9 amino acid sequence. Extreme Mechanics Letters, 2020, 36, 100652 Wave Propagation and Energy Dissipation in Collagen Molecules. ACS Biomaterials Science and 207 5.5 16 Engineering, **2020**, 6, 1367-1374 The different distribution of enzymatic collagen cross-links found in adult and children bone result 206 16 4.7 in different mechanical behavior of collagen. Bone, 2018, 110, 107-114 Improving the performance of pressure sensitive adhesives by tuning the crosslinking density and 205 16 3.9 locations. Polymer, 2018, 154, 164-171 A multi-timescale strength model of alpha-helical protein domains. Journal of Physics Condensed 1.8 204 16 Matter, 2009, 21, 035111 Tropoelastin is a Flexible Molecule that Retains its Canonical Shape. Macromolecular Bioscience, 203 16 5.5 **2019**, 19, e1800250 Origami: Folding creases through bending. Nature Materials, 2015, 14, 366-8 202 27 15 Osteogenesis imperfecta mutations lead to local tropocollagen unfolding and disruption of H-bond 201 3.7 15 network. *RSC Advances*, **2012**, 2, 3890 Natural stiffening increases flaw tolerance of biological fibers. Physical Review E, 2012, 86, 041902 200 2.4 15 Nanomechanical Characterization of the Triple Helix Domain in the Cell Puncture Needle of 199 15 3.9 Bacteriophage T4 Virus. Cellular and Molecular Bioengineering, 2009, 2, 66-74 Atomistic and continuum studies of a suddenly stopping supersonic crack. Computational Materials 198 3.2 15 Science, 2003, 28, 385-408 Crumpling deformation regimes of monolayer graphene on substrate: a molecular mechanics study. 1.8 14 Journal of Physics Condensed Matter, 2015, 27, 345401

1	96	Predicting rates of in vivo degradation of recombinant spider silk proteins. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, e97-e105	4.4	14	
1	95	Unraveling the Molecular Mechanisms of Thermo-responsive Properties of Silk-Elastin-Like Proteins by Integrating Multiscale Modeling and Experiment. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3727-373	34 ^{7.3}	14	
1	94	Calcium causes a conformational change in lamin A tail domain that promotes farnesyl-mediated membrane association. <i>Biophysical Journal</i> , 2013 , 104, 2246-53	2.9	14	
1	93	Failure of Graphdiyne: Structurally Directed Delocalized Crack Propagation. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2013 , 80,	2.7	14	
1	92	Triangular core as a universal strategy for stiff nanostructures in biology and biologically inspired materials. <i>Materials Science and Engineering C</i> , 2011 , 31, 775-780	8.3	14	
1	91	Bioinspired design of functionalised graphene. <i>Molecular Simulation</i> , 2012 , 38, 695-703	2	14	
1	90	Observations of 3 nm Silk Nanofibrils Exfoliated from Natural Silkworm Silk Fibers 2020 , 2, 153-160		14	
1	89	End-to-end deep learning method to predict complete strain and stress tensors for complex hierarchical composite microstructures. <i>Journal of the Mechanics and Physics of Solids</i> , 2021 , 154, 10450)6 ⁵	14	
1	88	Ion Effect and Metal-Coordinated Cross-Linking for Multiscale Design of Nereis Jaw Inspired Mechanomutable Materials. <i>ACS Nano</i> , 2017 , 11, 1858-1868	16.7	13	
1	87	Cooperative deformation of carboxyl groups in functionalized carbon nanotubes. <i>International Journal of Solids and Structures</i> , 2012 , 49, 2418-2423	3.1	13	
1	86	Composite materials. Taking a leaf from nature's book. <i>Nature Nanotechnology</i> , 2012 , 7, 417-9	28.7	13	
1	85	Superductile, Wavy Silica Nanostructures Inspired by Diatom Algae. <i>Advanced Engineering Materials</i> , 2011 , 13, B405-B414	3.5	13	
1	84	Computational and Theoretical Materiomics: Properties of Biological and de novo Bioinspired Materials. <i>Journal of Computational and Theoretical Nanoscience</i> , 2010 , 7, 1203-1209	0.3	13	
1	83	A Discrete Dislocation Plasticity Model of Creep in Polycrystalline Thin Films. <i>Defect and Diffusion Forum</i> , 2003 , 224-225, 107-126	0.7	13	
1	82	Grain Boundaries as Electrical Conduction Channels in Polycrystalline Monolayer WS. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 10189-10197	9.5	12	
1	81	Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response. <i>Topics in Current Chemistry</i> , 2015 , 369, 317-43		12	
1	80	Multiscale structural insights of load bearing bamboo: A computational modeling approach. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2020 , 107, 103743	4.1	12	
1	79	Coarse-grained model of tropoelastin self-assembly into nascent fibrils. <i>Materials Today Bio</i> , 2019 , 3, 100016	9.9	12	

178	Tensile strength of carbyne chains in varied chemical environments and structural lengths. <i>Nanotechnology</i> , 2014 , 25, 371001	3.4	12	
177	Category Theory Based Solution for the Building Block Replacement Problem in Materials Design. <i>Advanced Engineering Materials</i> , 2012 , 14, 810-817	3.5	12	
176	How protein materials balance strength, robustness, and adaptability. HFSP Journal, 2010, 4, 26-40		12	
175	Mechanics of Protein Crystals: Atomistic Modeling of Elasticity and Fracture. <i>Journal of Computational and Theoretical Nanoscience</i> , 2006 , 3, 670-683	0.3	12	
174	Atomistically Informed Mesoscale Model of Alpha-Helical Protein Domains. <i>International Journal for Multiscale Computational Engineering</i> , 2009 , 7, 237-250	2.4	12	
173	Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. <i>Angewandte Chemie</i> , 2020 , 132, 11292-11301	3.6	12	
172	Allysine modifications perturb tropoelastin structure and mobility on a local and global scale. <i>Matrix Biology Plus</i> , 2019 , 2, 100002	5.1	11	
171	Anisotropic Fracture Dynamics Due to Local Lattice Distortions. <i>ACS Nano</i> , 2019 , 13, 5693-5702	16.7	11	
170	Analysis of the vibrational and sound spectrum of over 100,000 protein structures and application in sonification. <i>Extreme Mechanics Letters</i> , 2019 , 29,	3.9	11	
169	Random Bulk Properties of Heterogeneous Rectangular Blocks With Lognormal Young's Modulus: Effective Moduli. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2015 , 82,	2.7	11	
168	Adverse effects of Alport syndrome-related Gly missense mutations on collagen type IV: Insights from molecular simulations and experiments. <i>Biomaterials</i> , 2020 , 240, 119857	15.6	11	
167	Computational Framework to Predict Failure and Performance of Bone-Inspired Materials. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 3236-3243	5.5	11	
166	Integrated Modeling and Experimental Approaches to Control Silica Modification of Design Silk-Based Biomaterials. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 2877-2888	5.5	11	
165	Plasticity of intermediate filament subunits. <i>PLoS ONE</i> , 2010 , 5, e12115	3.7	11	
164	Energy landscape, structure and rate effects on strength properties of alpha-helical proteins. Journal of Physics Condensed Matter, 2010 , 22, 035102	1.8	11	
163	Crystal size controlled deformation mechanism: Breakdown of dislocation mediated plasticity in single nanocrystals under geometric confinement. <i>Physical Review B</i> , 2008 , 77,	3.3	11	
162	Chirality-Dependent Second Harmonic Generation of MoS Nanoscroll with Enhanced Efficiency. <i>ACS Nano</i> , 2020 , 14, 13333-13342	16.7	11	
161	Sounds interesting: can sonification help us design new proteins?. <i>Expert Review of Proteomics</i> , 2019 , 16, 875-879	4.2	11	

(2020-2016)

160	Quantitative Estimates of Bio-Remodeling on Coastal Rock Surfaces. <i>Journal of Marine Science and Engineering</i> , 2016 , 4, 37	2.4	10
159	Mechanics of Mineralized Collagen Fibrils upon Transient Loads. ACS Nano, 2020, 14, 8307-8316	16.7	10
158	Perspectives on three-dimensional printing of self-assembling materials and structures. <i>Current Opinion in Biomedical Engineering</i> , 2020 , 15, 59-67	4.4	10
157	Mechanical players-The role of intermediate filaments in cell mechanics and organization. <i>Biophysical Journal</i> , 2013 , 105, 1733-4	2.9	10
156	Critical cross-linking to mechanically couple polyelectrolytes and flexible molecules. <i>Soft Matter</i> , 2013 , 9, 1076-1090	3.6	10
155	Two-dimensional discrete dislocation models of deformation in polycrystalline thin metal films on substrates. <i>Materials Science & Discreties and Processing</i> , 2005 , 400-401, 260-263	5.3	10
154	De novo topology optimization of total ossicular replacement prostheses. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2020 , 103, 103541	4.1	10
153	Understanding Plant Biomass via Computational Modeling. <i>Advanced Materials</i> , 2021 , 33, e2003206	24	10
152	Exploration of Biomass-Derived Activated Carbons for Use in Vanadium Redox Flow Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 9472-9482	8.3	9
151	The nature of the silicaphilic fluorescence of PDMPO. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 593	8 5.4 8	9
150	Tunable mechanical properties through texture control of polycrystalline additively manufactured materials using adjoint-based gradient optimization. <i>Acta Mechanica</i> , 2018 , 229, 4033-4044	2.1	9
149	Interfacial binding and aggregation of lamin A tail domains associated with Hutchinson-Gilford progeria syndrome. <i>Biophysical Chemistry</i> , 2014 , 195, 43-8	3.5	9
148	Deformation behavior and mechanical properties of amyloid protein nanowires. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2013 , 19, 43-9	4.1	9
147	Effect of Terminal Modification on the Molecular Assembly and Mechanical Properties of Protein-Based Block Copolymers. <i>Macromolecular Bioscience</i> , 2017 , 17, 1700095	5.5	9
146	Molecular modeling of protein materials: case study of elastin. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2013 , 21, 063001	2	9
145	Molecular Mechanics of Stutter Defects in Vimentin Intermediate Filaments. <i>Experimental Mechanics</i> , 2009 , 49, 79-89	2.6	9
144	Failure of Alzheimer A(1140) amyloid nanofibrils under compressive loading. <i>Jom</i> , 2010 , 62, 64-68	2.1	9
143	A semi-supervised approach to architected materials design using graph neural networks. <i>Extreme Mechanics Letters</i> , 2020 , 41, 101029	3.9	9

142	Deep learning model to predict fracture mechanisms of graphene. <i>Npj 2D Materials and Applications</i> , 2021 , 5,	8.8	9
141	Atomically Sharp Dual Grain Boundaries in 2D WS Bilayers. <i>Small</i> , 2019 , 15, e1902590	11	8
140	Probability distribution of fracture elongation, strength and toughness of notched rectangular blocks with lognormal Young's modulus. <i>Journal of the Mechanics and Physics of Solids</i> , 2015 , 84, 116-12	295	8
139	Mechanics of trichocyte alpha-keratin fibers: Experiment, theory, and simulation. <i>Journal of Materials Research</i> , 2015 , 30, 26-35	2.5	8
138	Cooperativity governs the size and structure of biological interfaces. <i>Journal of Biomechanics</i> , 2012 , 45, 2778-83	2.9	8
137	Linking Genetics and Mechanics in Structural Protein Materials: A Case Study of an Alport Syndrome Mutation in Tropocollagen. <i>Mathematics and Mechanics of Solids</i> , 2010 , 15, 755-770	2.3	8
136	Shaky foundations of hierarchical biological materials. <i>Nano Today</i> , 2011 , 6, 332-338	17.9	8
135	Bond energy effects on strength, cooperativity and robustness of molecular structures. <i>Interface Focus</i> , 2011 , 1, 734-43	3.9	8
134	Compressive deformation of ultralong amyloid fibrils. <i>Acta Mechanica Sinica/Lixue Xuebao</i> , 2010 , 26, 977-986	2	8
133	Stress and energy flow field near a rapidly propagating mode I crack. <i>Lecture Notes in Computational Science and Engineering</i> , 2004 , 143-156	0.3	8
132	Large-Scale Hierarchical Molecular Modeling of Nanostructured Biological Materials. <i>Journal of Computational and Theoretical Nanoscience</i> , 2006 , 3, 603-623	0.3	8
131	Liquified protein vibrations, classification and cross-paradigm de novo image generation using deep neural networks. <i>Nano Futures</i> , 2020 , 4, 035004	3.6	8
130	Molecular characterization and atomistic model of biocrude oils from hydrothermal liquefaction of microalgae. <i>Algal Research</i> , 2018 , 35, 262-273	5	8
129	Designing and fabricating materials from fire using sonification and deep learning. <i>IScience</i> , 2021 , 24, 102873	6.1	8
128	The Order-Disorder Continuum: Linking Predictions of Protein Structure and Disorder through Molecular Simulation. <i>Scientific Reports</i> , 2020 , 10, 2068	4.9	7
127	Carbon dioxide enhances fragility of ice crystals. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 445302	3	7
126	Muscle dystrophy single point mutation in the 2B segment of lamin A does not affect the mechanical properties at the dimer level. <i>Journal of Biomechanics</i> , 2008 , 41, 1295-301	2.9	7
125	Mechanics of Protein Crystals: Atomistic Modeling of Elasticity and Fracture. <i>Journal of Computational and Theoretical Nanoscience</i> , 2006 , 3, 670-683	0.3	7

124	Molecular origin of viscoelasticity in mineralized collagen fibrils. <i>Biomaterials Science</i> , 2021 , 9, 3390-340	09.4	7	
123	Frank-van der Merwe growth in bilayer graphene. <i>Matter</i> , 2021 ,	12.7	7	
122	Matriarch: A Python Library for Materials Architecture. <i>ACS Biomaterials Science and Engineering</i> , 2015 , 1, 1009-1015	5.5	6	
121	Nature Way: Hierarchical Strengthening through Weakness. <i>Matter</i> , 2019 , 1, 302-303	12.7	6	
120	Peeling Silicene From Model Silver Substrates in Molecular Dynamics Simulations. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2015 , 82,	2.7	6	
119	Computational and theoretical modeling of intermediate filament networks: Structure, mechanics and disease. <i>Acta Mechanica Sinica/Lixue Xuebao</i> , 2012 , 28, 941-950	2	6	
118	Integrated multiscale biomaterials experiment and modelling: a perspective. <i>Interface Focus</i> , 2016 , 6, 20150098	3.9	6	
117	Comparative Analysis of Nanomechanical Features of Coronavirus Spike Proteins and Correlation with Lethality and Infection Rate. <i>Matter</i> , 2021 , 4, 265-275	12.7	6	
116	Deep learning approach to assess damage mechanics of bone tissue. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021 , 123, 104761	4.1	6	
115	Multiscale mechanics of the lateral pressure effect on enhancing the load transfer between polymer coated CNTs. <i>Nanoscale</i> , 2017 , 9, 5565-5576	7.7	5	
114	Directed self-assembly of end-functionalized nanofibers: from percolated networks to liquid crystal-like phases. <i>Nanotechnology</i> , 2015 , 26, 205602	3.4	5	
113	Categorical prototyping: incorporating molecular mechanisms into 3D printing. <i>Nanotechnology</i> , 2016 , 27, 024002	3.4	5	
112	Integrated Multiscale Biomaterials Experiment and Modeling. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 2628-2632	5.5	5	
111	Mechanical properties of crosslinks controls failure mechanism of hierarchical intermediate filament networks. <i>Theoretical and Applied Mechanics Letters</i> , 2012 , 2, 014005	1.8	5	
110	Constrained Grain Boundary Diffusion in Thin Copper Films. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 821, 36		5	
109	A Mother-daughter-granddaughter mechanism of shear dominated intersonic crack motion along interfaces of dissimilar materials 2004 , 27, 763-769		5	
108	Numerical homogenization of active material finite-element cells. <i>Communications in Numerical Methods in Engineering</i> , 2003 , 19, 977-989		5	
107	Bilateral carpal tunnel syndrome in a normal child. <i>Journal of Hand Surgery</i> , 1994 , 19, 913-4	2.6	5	

106	Modeling Dynamic Fracture Using Large-Scale Atomistic Simulations 2006 , 1-68		5
105	Probing the Role of Bone Lamellar Patterns through Collagen Microarchitecture Mapping, Numerical Modeling, and 3D-Printing. <i>Advanced Engineering Materials</i> , 2020 , 22, 2000387	3.5	5
104	Flaw Tolerant Nanostructures of Biological Materials 2005 , 131-138		5
103	Molecular dynamics study of the mechanical properties of polydisperse pressure-sensitive adhesives. <i>International Journal of Adhesion and Adhesives</i> , 2019 , 92, 58-64	3.4	4
102	The tail domain of lamin B1 is more strongly modulated by divalent cations than lamin A. <i>Nucleus</i> , 2015 , 6, 203-11	3.9	4
101	Molecular Modeling and Mechanics of Acrylic Adhesives on a Graphene Substrate with Roughness. <i>BioNanoScience</i> , 2016 , 6, 177-184	3.4	4
100	Hierarchical nanostructures for functional materials. <i>Nanotechnology</i> , 2018 , 29, 280201	3.4	4
99	Dynamic Failure of a Lamina Meshwork in Cell Nuclei under Extreme Mechanical Deformation. <i>BioNanoScience</i> , 2011 , 1, 14-23	3.4	4
98	Amino acid sequence dependence of nanoscale deformation mechanisms in alpha-helical protein filaments. <i>Journal of Strain Analysis for Engineering Design</i> , 2009 , 44, 517-531	1.3	4
97	Copper Nanowires Broken into Nanospheres by Rayleigh Instability. MRS Bulletin, 2005, 30, 5-6	3.2	4
96	Coarse-Graining Parameterization and Multiscale Simulation of Hierarchical Systems. Part I 2010 , 13-34		4
95	Words to Matter: De novo Architected Materials Design Using Transformer Neural Networks. <i>Frontiers in Materials</i> , 2021 , 8,	4	4
94	Tuning Mechanical Properties in Polycrystalline Solids Using a Deep Generative Framework. <i>Advanced Engineering Materials</i> , 2021 , 23, 2001339	3.5	4
93	Mutable polyelectrolyte tube arrays: mesoscale modeling and lateral force microscopy. <i>Soft Matter</i> , 2017 , 13, 5543-5557	3.6	3
92	Multi-scale modeling of biomaterials and tissues. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2013 , 13-55	0.6	3
91	Bioinspired Graphene Nanogut. Journal of Applied Mechanics, Transactions ASME, 2013, 80,	2.7	3
90	Viscoelastic relaxation time and structural evolution during length contraction of spider silk protein nanostructures. <i>MRS Communications</i> , 2013 , 3, 185-190	2.7	3
89	Rupture Mechanics of Vimentin Intermediate Filament Tetramers. <i>Journal of Engineering Mechanics - ASCE</i> , 2009 , 135, 422-433	2.4	3

(2005-2009)

88	Size and Geometry Effects on Flow Stress in Bioinspired de novo Metal-matrix Nanocomposites. <i>Advanced Engineering Materials</i> , 2009 , 11, 774-781	3.5	3
87	Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in intermediate filament protein networks. <i>Nature Precedings</i> , 2007 ,		3
86	Threshold crack speed in dynamic fracture of silicon. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 978,		3
85	Biegen und Brechen im Supercomputer: Duktile Verformungen und sprüe Brühe von Kristallen. <i>Physik in Unserer Zeit</i> , 2004 , 35, 30-37	0.1	3
84	Mechanical and interface properties of biominerals 2014 , 337-351		3
83	Screening and Understanding Li Adsorption on Two-Dimensional Metallic Materials by Learning Physics and Physics-Simplified Learning. <i>Jacs Au</i> , 2021 , 1, 1904-1914		3
82	Mesomechanics of a three-dimensional spider web. <i>Journal of the Mechanics and Physics of Solids</i> , 2020 , 144, 104096	5	3
81	Effect of the silica nanoparticle size on the osteoinduction of biomineralized silk-silica nanocomposites. <i>Acta Biomaterialia</i> , 2021 , 120, 203-212	10.8	3
80	WebNet: A biomateriomic three-dimensional spider web neural net. <i>Extreme Mechanics Letters</i> , 2021 , 42, 101034	3.9	3
79	A perspective on musical representations of folded protein nanostructures. <i>Nano Futures</i> , 2021 , 5, 0125	5 9.1 6	3
78	Machine learning model for fast prediction of the natural frequencies of protein molecules <i>RSC Advances</i> , 2020 , 10, 16607-16615	3.7	2
77	The Effective Modulus of Random Checkerboard Plates. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2016 , 83,	2.7	2
76	Molecular Mechanics of Disulfide Bonded Alpha-Helical Protein Filaments. <i>BioNanoScience</i> , 2013 , 3, 85-	9 4 .4	2
75	Direct atomistic simulation of brittle-to-ductile transition in silicon single crystals. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1272, 1		2
74	Multiscale modeling of organic-inorganic interface: From molecular dynamics simulation to finite element modeling. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1466, 38		2
73	Shock Loading of Bone-Inspired Metallic Nanocomposites. <i>Solid State Phenomena</i> , 2008 , 139, 11-22	0.4	2
72	Atomistic and Continuum Studies of Diffusional Creep and Associated Dislocation Mechanisms in thin Films on Substrates. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 779, 471		2
71	The Computational Materials Design Facility (CMDF): A powerful framework for multi-paradigm multi-scale simulations. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 894, 1		2

70	Topology optimization of smart structures using a homogenization approach 2002,		2
69	Chemical Complexity in Mechanical Deformation of Metals. <i>International Journal for Multiscale Computational Engineering</i> , 2007 , 5, 181-202	2.4	2
68	Encoding and exploring latent design space of optimal material structures via a VAE-LSTM model. <i>Forces in Mechanics</i> , 2021 , 5, 100054	1.5	2
67	Sonification of a 3-D Spider Web and Reconstitution for Musical Composition Using Granular Synthesis. <i>Computer Music Journal</i> , 2021 , 44, 43-59	0.5	2
66	Role of Methylene Diphenyl Diisocyanate (MDI) Additives on SBS-Modified Asphalt with Improved Thermal Stability and Mechanical Performance. <i>Energy & Description of the Energy & Description of the E</i>	4.1	2
65	Computational Materials Science of Bionanomaterials: Structure, Mechanical Properties and Applications of Elastin and Collagen Proteins 2014 , 941-962		2
64	Silk and Web Synergy: The Merging of Material and Structural Performance. <i>Biologically-inspired Systems</i> , 2014 , 219-268	0.7	2
63	A coarse-grained mechanical model for folding and unfolding of tropoelastin with possible mutations. <i>Acta Biomaterialia</i> , 2021 , 134, 477-489	10.8	2
62	Strength and fracture toughness of heterogeneous blocks with joint lognormal modulus and failure strain. <i>Journal of the Mechanics and Physics of Solids</i> , 2016 , 92, 72-86	5	2
61	Fuzzy binding model of molecular interactions between tropoelastin and integrin alphaVbeta3. <i>Biophysical Journal</i> , 2021 , 120, 3138-3151	2.9	2
60	A deep learning augmented genetic algorithm approach to polycrystalline 2D material fracture discovery and design. <i>Applied Physics Reviews</i> , 2021 , 8, 041414	17.3	2
59	Generative design, manufacturing, and molecular modeling of 3D architected materials based on natural language input. <i>APL Materials</i> , 2022 , 10, 041107	5.7	2
58	End-to-end Prediction of Multimaterial Stress Fields and Fracture Patterns using Cycle-Consistent Adversarial and Transformer Neural Networks. <i>Biomedical Engineering Advances</i> , 2022 , 100038		2
57	Structural, Mechanical and Functional Properties of Intermediate Filaments from the Atomistic to the Cellular Scales 2011 , 117-166		1
56	The Materiome. Springer Series in Materials Science, 2012 , 27-60	0.9	1
55	Universality-Diversity Paradigm: Music, Materiomics, and Category Theory. <i>Springer Series in Materials Science</i> , 2012 , 109-169	0.9	1
54	Multi-Paradigm Modeling of Fracture of a Silicon Single Crystal under Mode II Shear Loading. <i>Journal of Algorithms and Computational Technology</i> , 2008 , 2, 203-222	0.7	1
53	Atomistic Modeling of Elasticity and Fracture of a (10, 10) Single Wall Carbon Nanotube. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 924, 1		1

52	Dynamical Fracture Instabilities Due to Local Hyperelasticity at Crack Tips. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 929, 1		1
51	Hierarchical nanomechanics of vimentin alpha helical coiled-coil proteins. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 978,		1
50	Atomistic modeling of elasticity, plasticity and fracture of protein crystals. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 898, 1		1
49	Bioinspired translation of classical music intoprotein structures using deep learning and molecular modeling. <i>Bioinspiration and Biomimetics</i> , 2021 , 17,	2.6	1
48	Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear lamina		1
47	ColGen: An end-to-end deep learning model to predict thermal stability of de novo collagen sequences. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2022 , 125, 104921	4.1	1
46	Modeling and Simulation of Hierarchical Protein Materials389-409		1
45	Surface adhesion of viruses and bacteria: Defend only and/or extinguish also?! A perspective. <i>MRS Advances</i> , 2021 , 6, 1-7	0.7	1
44	Silk-Based Hierarchical Materials for High Mechanical Performance at the Interface of Modeling, Synthesis, and Characterization 2018 , 1-28		1
43	Multiscale Modeling of Lignocellulosic Biomass 2018 , 1-22		1
42	DeepFlames: Neural network-driven self-assembly of flame particles into hierarchical structures. <i>MRS Communications</i> ,1	2.7	1
41	Fundamental Investigation of Biomass Interaction for Green Composites: Experiments and Molecular Dynamics Simulations. <i>Advanced Functional Materials</i> , 2022 , 32, 2109881	15.6	1
40	Structural Insights into the Glycine Pair Motifs in Type III Collagen. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 269-278	5.5	0
39	Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1061, 1		O
38	Multiscale Modeling of Lignocellulosic Biomass 2020 , 1627-1648		О
37	Interactive exploration of a hierarchical spider web structure with sound. <i>Journal on Multimodal User Interfaces</i> ,1	1.7	O
36	Multiscale Modeling and Applications of Bioinspired Materials with Gyroid Structures. <i>Springer Series in Materials Science</i> , 2021 , 629-644	0.9	О
35	Deep learning based design of porous graphene for enhanced mechanical resilience. <i>Computational Materials Science</i> , 2022 , 206, 111270	3.2	O

34	DeepBuckle: Extracting physical behavior directly from empirical observation for a material agnostic approach to analyze and predict buckling. <i>Journal of the Mechanics and Physics of Solids</i> , 2022 , 104909	5	O
33	Reaching the horizon: First MRS Bulletin Impact articles published. MRS Bulletin, 2020, 45, 879-879	3.2	
32	Flaw tolerance promoted by dissipative deformation mechanisms between material building blocks. <i>Philosophical Magazine Letters</i> , 2014 , 94, 592-600	1	
31	Middle School Classroom MaterialsStructure and Failure of Wood: A Computational and Micrographic Examination. <i>Microscopy and Microanalysis</i> , 2014 , 20, 2154-2155	0.5	
30	Spidermans Geheimnis. <i>Physik in Unserer Zeit</i> , 2013 , 44, 72-79	0.1	
29	Carbon Nanotubes: Atomistic Investigation of Load Transfer Between DWNT Bundles T rosslinked by PMMA Oligomers (Adv. Funct. Mater. 15/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 1976-1976	15.6	
28	Computational multiscale studies of collagen tissues in the context of brittle bone disease osteogenesis imperfecta. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1274, 1		
27	Microscale Structural Model of Alzheimer A[11-40) Amyloid Fibril: Comparative Study of 2- and 3-fold Morphologies. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1240, 1		
26	Alport Syndrome mutation changes molecular structure and nanomechanics of type IV tropocollagen. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1187, 26		
25	The Future of Biomateriomics. <i>Springer Series in Materials Science</i> , 2012 , 425-430	0.9	
24	Unlocking Nature: Case Studies. Springer Series in Materials Science, 2012, 299-356	0.9	
23	The Challenges of Biological Materials. Springer Series in Materials Science, 2012, 61-107	0.9	
22	Reactive Force Field Studies of Large-Deformation of Hybrid Carbon Nanotube-Metal Nanowires. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 963, 1		
21	Atomistic Studies of Crack Branching at Bimaterial Interfaces: Preliminary Results. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 929, 1		
20	Entropic Elasticity Controls Nanomechanics of Single Tropocollagen Molecules. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 975, 1		
19	Quantization of crack speeds in dynamic fracture of silicon: Multiparadigm ReaxFF modeling. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 910, 7		
18	Asymptotic Strength Limit of Hydrogen Bond Assemblies in Proteins at Vanishing Pulling Rates. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1062, 1		
17	Hyperelastic effects in brittle materials failure. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 821, 204		

LIST OF PUBLICATIONS

Analysis of a one-billion atom simulation of work-hardening in ductile materials. Materials Research 16 Society Symposia Proceedings, 2004, 821, 270 A Mother-Daughter Mechanism of Mode I cracks: Supersonic Crack Motion Along Interfaces of 15 Dissimilar Materials. Materials Research Society Symposia Proceedings, 2005, 904, 1 Multi-paradigm multi-scale modeling of dynamical crack propagation in silicon using the ReaxFF 14 reactive force field. Materials Research Society Symposia Proceedings, 2005, 904, 1 Silk-Based Hierarchical Materials for High Mechanical Performance at the Interface of Modeling, 13 Synthesis, and Characterization 2020, 1547-1574 Multiscale Modeling of Structural Materials: Chemistry and Mechanical Performance 2020, 1541-1546 12 Atomistic Studies of Flaw Tolerant Nanoscale Structural Links in Biological Materials 2006, 139-150 11 Introducing materiomics1-12 10 Computational Scale Linking in Biological Protein Materials 2010, 491-531 9 Multiscale Modeling of Biological Protein Materials Deformation and Failure. Challenges and 8 0.7 Advances in Computational Chemistry and Physics, 2010, 473-533 Coarse-Graining Parameterization and Multiscale Simulation of Hierarchical Systems. Part II 2010, 35-68 7 Mechanical Characterization in Molecular Simulation. Springer Series in Materials Science, 2012, 265-296 o.9 6 Synthesis and Design. Springer Series in Materials Science, 2012, 399-424 0.9 Pathological Materiomics. Springer Series in Materials Science, 2012, 357-398 0.9 Computational Approaches and Simulation. Springer Series in Materials Science, 2012, 213-263 0.9 Multiscale Modeling of Structural Materials: Chemistry and Mechanical Performance 2018, 1-6 2 Biomimicry for natural and synthetic composites and use of machine learning in hierarchical design **2022**, 141-182