
Basil Galatis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4394189/publications.pdf Version: 2024-02-01

RASH CALATIS

#	Article	IF	CITATIONS
1	Callose: a multifunctional (1, 3)-β–d-glucan involved in morphogenesis and function of angiosperm stomata. Journal of Biological Research, 2021, 28, 17.	2.2	3
2	Callose and homogalacturonan epitope distribution in stomatal complexes of Zea mays and Vigna sinensis. Protoplasma, 2020, 257, 141-156.	1.0	16
3	De-Esterified Homogalacturonan Enrichment of the Cell Wall Region Adjoining the Preprophase Cortical Cytoplasmic Zone in Some Protodermal Cell Types of Three Land Plants. International Journal of Molecular Sciences, 2020, 21, 81.	1.8	2
4	Local differentiation of cell wall matrix polysaccharides in sinuous pavement cells: its possible involvement in the flexibility of cell shape. Plant Biology, 2018, 20, 223-237.	1.8	29
5	The intracellular and intercellular cross-talk during subsidiary cell formation in Zea mays: existing and novel components orchestrating cell polarization and asymmetric division. Annals of Botany, 2018, 122, 679-696.	1.4	19
6	ROS homeostasis as a prerequisite for the accomplishment of plant cytokinesis. Protoplasma, 2017, 254, 569-586.	1.0	4
7	Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays. Planta, 2016, 244, 1125-1143.	1.6	25
8	Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants. Annals of Botany, 2016, 117, 401-419.	1.4	18
9	Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes. Protoplasma, 2016, 253, 1081-1099.	1.0	22
10	Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of <i>Zea mays</i> . Plant Signaling and Behavior, 2015, 10, e984531.	1.2	18
11	Polarized endoplasmic reticulum aggregations in the establishing division plane of protodermal cells of the fern Asplenium nidus. Protoplasma, 2015, 252, 181-198.	1.0	2
12	The interplay between ROS and tubulin cytoskeleton in plants. Plant Signaling and Behavior, 2014, 9, e28069.	1.2	62
13	Phosphorylation of a p38″ike <scp>MAPK</scp> is involved in sensing cellular redox state and drives atypical tubulin polymer assembly in angiosperms. Plant, Cell and Environment, 2014, 37, 1130-1143.	2.8	16
14	Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays. Annals of Botany, 2013, 112, 1067-1081.	1.4	24
15	Plant cell division. Plant Signaling and Behavior, 2012, 7, 771-778.	1.2	58
16	Formation of an endoplasmic reticulum ring associated with acetylated microtubules in the angiosperm preprophase band. Cytoskeleton, 2012, 69, 252-265.	1.0	20
17	Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in rootâ€ŧip cells of <i>Triticum turgidum</i> and <i>Arabidopsis thaliana</i> . Cytoskeleton, 2012, 69, 1-21.	1.0	83
18	Actin filament-organized local cortical endoplasmic reticulum aggregations in developing stomatal complexes of grasses. Protoplasma, 2011, 248, 373-390.	1.0	16

#	Article	IF	CITATIONS
19	Callose implication in stomatal opening and closure in the fern <i>Asplenium nidus</i> . New Phytologist, 2010, 186, 623-635.	3.5	19
20	A new callose function. Plant Signaling and Behavior, 2010, 5, 1359-1364.	1.2	17
21	The role of callose in guard-cell wall differentiation and stomatal pore formation in the fern Asplenium nidus. Annals of Botany, 2009, 104, 1373-1387.	1.4	17
22	Microtubule involvement in the deposition of radial fibrillar callose arrays in stomata of the fern <i>Asplenium nidus</i> L Cytoskeleton, 2009, 66, 342-349.	4.4	16
23	Diaphragm development in cytokinetic vegetative cells of brown algae. Botanica Marina, 2009, 52, 150-161.	0.6	15
24	The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of <i>Zea mays</i> . Cytoskeleton, 2008, 65, 863-875.	4.4	24
25	Phospholipase C signaling involvement in macrotubule assembly and activation of the mechanism regulating protoplast volume in plasmolyzed root cells of <i>Triticum turgidum</i> . New Phytologist, 2008, 178, 267-282.	3.5	15
26	Radial endoplasmic reticulum arrays co-localize with radial F-actin in polarizing cells of brown algae. European Journal of Phycology, 2007, 42, 253-262.	0.9	8
27	Cortical actin filament organization in developing and functioning stomatal complexes ofZea maysandTriticum turgidum. Cytoskeleton, 2007, 64, 531-548.	4.4	32
28	Macrotubuleâ€dependent protoplast volume regulation in plasmolysed rootâ€ŧip cells of Triticum turgidum : involvement of phospholipase D. New Phytologist, 2006, 171, 737-750.	3.5	35
29	Cytoskeletal asymmetry inZea mayssubsidiary cell mother cells: A monopolar prophase microtubule half-spindle anchors the nucleus to its polar position. Cytoskeleton, 2006, 63, 696-709.	4.4	57
30	Cytoskeleton and Morphogenesis in Brown Algae. Annals of Botany, 2006, 97, 679-693.	1.4	54
31	The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments. New Phytologist, 2005, 167, 721-732.	3.5	138
32	Aluminium causes variable responses in actin filament cytoskeleton of the root tip cells of Triticum turgidum. Protoplasma, 2005, 225, 129-140.	1.0	31
33	A unique pattern of F-actin organization supports cytokinesis in vacuolated cells of Macrocystis pyrifera (Phaeophyceae) gametophytes. Protoplasma, 2005, 226, 241-245.	1.0	8
34	A cortical cytoplasmic ring predicts the division plane in vacuolated cells of Coleus : the role of actomyosin and microtubules in the establishment and function of the division site. New Phytologist, 2004, 163, 271-286.	3.5	24
35	The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. New Phytologist, 2004, 161, 613-639.	3.5	100
36	Hyperosmotically induced accumulation of a phosphorylated p38-like MAPK involved in protoplast volume regulation of plasmolyzed wheat root cells. FEBS Letters, 2004, 573, 168-174.	1.3	29

#	Article	IF	CITATIONS
37	Radial F-actin configurations are involved in polarization during protoplast germination and thallus branching of Macrocystis pyrifera (Phaeophyceae, Laminariales). Phycologia, 2004, 43, 693-702.	0.6	11
38	Organization of the endoplasmic reticulum in dividing cells of the gymnosperms Pinus brutia and Pinus nigra, and of the pterophyte Asplenium nidus. Cell Biology International, 2003, 27, 31-40.	1.4	22
39	F-actin cytoskeleton and cell wall morphogenesis in brown algae. Cell Biology International, 2003, 27, 209-210.	1.4	7
40	Actomyosin is involved in the plasmolytic cycle: gliding movement of the deplasmolyzing protoplast. Protoplasma, 2003, 221, 245-256.	1.0	18
41	Structure and Development of Stomata on the Primary Root of Ceratonia siliqua L Annals of Botany, 2002, 89, 23-29.	1.4	21
42	Hyperosmotic stress-induced actin filament reorganization in leaf cells of Chlorophyton comosum. Journal of Experimental Botany, 2002, 53, 1699-1710.	2.4	64
43	Hyperosmotic Stress Induces Formation of Tubulin Macrotubules in Root-Tip Cells of Triticum turgidum: Their Probable Involvement in Protoplast Volume Control. Plant and Cell Physiology, 2002, 43, 911-922.	1.5	59
44	Aluminium Effects on Microtubule Organization in Dividing Root-Tip Cells of Triticum turgidum. II. Cytokinetic Cells. Journal of Plant Research, 2001, 114, 157-170.	1.2	42
45	Endoplasmic reticulum preprophase band in dividing root-tip cells of Pinus brutia. Planta, 2001, 213, 824-827.	1.6	39
46	Altered patterns of tubulin polymerization in dividing leaf cells ofChlorophyton comosumafter a hyperosmotic treatment. New Phytologist, 2001, 149, 193-207.	3.5	34
47	The effect of taxol on centrosome function and microtubule organization in apical cells of Sphacelaria rigidula (Phaeophyceae). Phycological Research, 2001, 49, 23-34.	0.8	9
48	Aluminium effects on microtubule organization in dividing rootâ€ŧip cells of Triticum turgidum . I. Mitotic cells. New Phytologist, 2000, 145, 211-224.	3.5	57
49	Gamma-tubulin colocalizes with microtubule arrays and tubulin paracrystals in dividing vegetative cells of higher plants. Protoplasma, 2000, 210, 179-187.	1.0	28
50	Study of mitosis in root-tip cells ofTriticum turgidum treated with the DNA-intercalating agent ethidium bromide. Protoplasma, 2000, 211, 151-164.	1.0	9
51	F-actin involvement in apical cell morphogenesis of Sphacelaria rigidula (Phaeophyceae): mutual alignment between cortical actin filaments and cellulose microfibrils. European Journal of Phycology, 2000, 35, 195-203.	0.9	6
52	F-Actin organization during the cell cycle of Sphacelaria rigidula (Phaeophyceae). European Journal of Phycology, 2000, 35, 25-33.	0.9	13
53	Microtubule and actin filament organization during stomatal morphogenesis in the fern Asplenium nidus . II. Guard cells. New Phytologist, 1999, 141, 209-223.	3.5	21
54	Probable involvement of cytoskeleton in stomatal-pore formation in Asplenium nidus L Protoplasma, 1998, 203, 48-57.	1.0	15

#	Article	IF	CITATIONS
55	Morphogenesis of "Floating―Stomata in the Fern anemia mandioccana Raddi, Stomatal Pore Formation. , 1998, , 615-618.		2
56	Microtubule and actin filament organization during stomatal morphogenesis in the fernAsplenium nidus. Protoplasma, 1997, 198, 93-106.	1.0	14
57	Centrosome and microtubule dynamics in apical cells ofSphacelaria rigidula (Phaeophyceae) treated with nocodazole. Protoplasma, 1997, 199, 161-172.	1.0	15
58	Nuclear and microtubular cycles in heterophasic multinuclearTriticum root-tip cells induced by caffeine. Protoplasma, 1996, 194, 164-176.	1.0	8
59	Cell division of binuclear cells induced by caffeine: Spindle organization and determination of division plane. Journal of Plant Research, 1996, 109, 265-275.	1.2	20
60	Freeze-fracture studies in the brown algaAsteronema rhodochortonoides. Protoplasma, 1996, 193, 46-57.	1.0	6
61	Telophase-interphase transition in taxol-treatedTriticum root cells: cortical microtubules appear without the prior presence of a radial perinuclear array. Protoplasma, 1995, 188, 78-84.	1.0	11
62	The effect of taxol onTriticum preprophase root cells: preprophase microtubule band organization seems to depend on new microtubule assembly. Protoplasma, 1995, 186, 72-78.	1.0	29
63	Sinuous ordinary epidermal cells: behind several patterns of waviness, a common morphogenetic mechanism. New Phytologist, 1994, 127, 771-780.	3.5	55
64	Interphase and preprophase microtubule organization in some polarized cell types of the liverwort Marchantia paleacea Bert New Phytologist, 1993, 124, 409-421.	3.5	7
65	Microtubule organization and cell morphogenesis in two semiâ€lobed cell types of Adiantum capillusâ€veneris L. leaflets. New Phytologist, 1993, 125, 509-520.	3.5	26
66	Microtubule organization, mesophyll cell morphogenesis, and intercellular space formation inAdiantum capillus veneris leaflets. Protoplasma, 1993, 172, 97-110.	1.0	39
67	Microtubules and morphogenesis in ordinary epidermal cells ofVigna sinensis leaves. Protoplasma, 1993, 174, 91-100.	1.0	49
68	Patterns of microtubule organization in two polyhedral cell types in the gametophyte of the liverwort Marchantia paleacea Bert New Phytologist, 1992, 122, 165-178.	3.5	15
69	Immunofluorescence and electron microscopic studies of microtubule organization during the cell cycle ofDictyota dichotoma (Phaeophyta, Dictyotales). Protoplasma, 1992, 169, 75-84.	1.0	42
70	The organization of F-actin in root tip cells ofAdiantum capillus veneris throughout the cell cycle. Protoplasma, 1992, 170, 128-137.	1.0	35
71	Microtubules in Cell Morphogenesis and Intercellular Space Formation in Zea mays Leaf Mesophyll and Pilea cadierei Epithem. Journal of Plant Physiology, 1991, 137, 591-601.	1.6	31
72	Patterns of microtubule reappearance in root cells ofVigna sinensis recovering from a colchicine treatment. Protoplasma, 1991, 160, 131-143.	1.0	22

#	Article	IF	CITATIONS
73	Microtubule organization and morphogenesis of stomata in caffeine-affected seedlings ofZea mays. Protoplasma, 1991, 165, 11-26.	1.0	16
74	Patterns of cortical and perinuclear microtubule organization in meristematic root cells ofAdiantum capillus veneris. Protoplasma, 1991, 165, 173-188.	1.0	37
75	Aberrant sieve element differentiation in primary leaves of Vigna sinensis Endl. affected by colchicine. New Phytologist, 1991, 117, 619-631.	3.5	8
76	Tubulin conformation in microtubule-free cells ofVigna sinensis. Protoplasma, 1990, 154, 132-143.	1.0	26
77	Thallus development inHalopteris filicina(Phaeophyceae, Sphacelariales). British Phycological Journal, 1990, 25, 63-74.	1.3	18
78	Microtubules and lithocyst morphogenesis in <i>Pilea cadierei</i> . Canadian Journal of Botany, 1989, 67, 2788-2804.	1.2	4
79	Microtubules and epithem-cell morphogenesis in hydathodes of Pilea cadierei. Planta, 1988, 176, 287-297.	1.6	24
80	Thallus development inDictyopteris membranacea(Phaeophyta, Dictyotales). British Phycological Journal, 1988, 23, 71-88.	1.3	34
81	Induction, polarity and spatial control of cytokinesis in some abnormal subsidiary cell mother cells ofZea mays. Protoplasma, 1987, 140, 26-42.	1.0	25
82	Ultrastructural studies on zoosporogenesis of Halopteris filicina (Sphacelariales, Phaeophyta). Phycologia, 1986, 25, 358-370.	0.6	14
83	Studies on the formation of â€ [~] floating' guard cell mother cells in <i>Anemia</i> . Journal of Cell Science, 1986, 80, 29-55.	1.2	15
84	Studies on the formation of 'floating' guard cell mother cells in Anemia. Journal of Cell Science, 1986, 80, 29-55.	1.2	11
85	Studies on the development of the air pores and air chambers ofMarchantia paleacea. Protoplasma, 1985, 128, 120-135.	1.0	36
86	Studies on the development of the air pores and air chambers ofMarchantia paleacea. Protoplasma, 1985, 128, 136-146.	1.0	16
87	Ultrastructural studies on thallus development inDictyota dichotoma(Phaeophyta, Dictyotales). British Phycological Journal, 1985, 20, 263-276.	1.3	25
88	Positional inconsistency between preprophase microtubule band and final cell plate arrangement during triangular subsidiary cell and atypical hair cell formation in two Triticum species. Canadian Journal of Botany, 1984, 62, 343-359.	1.2	26
89	Experimental studies on the function of the cortical cytoplasmic zone of the preprophase microtubule band. Protoplasma, 1984, 122, 11-26.	1.0	49
90	FINE STRUCTURAL STUDIES ON THE INTERPHASE AND DIVIDING APICAL CELLS OF SPHACELARIA TRIBULOIDES (PHAEOPHYTA)1. Journal of Phycology, 1983, 19, 16-30.	1.0	61

#	Article	IF	CITATIONS
91	Microtubules and their organizing centres in differentiating guard cells ofAdiantum capillus veneris. Protoplasma, 1983, 115, 176-192.	1.0	47
92	Synchronous organization of two preprophase microtubule bands and final cell plate arrangement in subsidiary cell mother cells of someTriticum species. Protoplasma, 1983, 117, 24-39.	1.0	43
93	The organization of microtubules in guard cell mother cells of Zea mays. Canadian Journal of Botany, 1982, 60, 1148-1166.	1.2	56
94	Studies on the Development of the Air Pores and Air Chambers of Marchantia paleacea. Annals of Botany, 1982, 49, 377-396.	1.4	21
95	Pre-prophase Microtubule Band and Local Wall Thickening in Guard Cell Mother Cells of Some Leguminosae. Annals of Botany, 1982, 50, 779-791.	1.4	40
96	THE ULTRASTRUCTURAL CYTOLOGY OF THE DIFFERENTIATING GUARD CELLS OF VIGNA SINENSIS. American Journal of Botany, 1980, 67, 1243-1261.	0.8	36
97	Microtubules and guard-cell morphogenesis in <i>Zea mays</i> L. Journal of Cell Science, 1980, 45, 211-244.	1.2	69
98	THE ULTRASTRUCTURAL CYTOLOGY OF THE DIFFERENTIATING GUARD CELLS OF VIGNA SINENSIS. , 1980, 67, 1243.		18
99	Microtubules and guard-cell morphogenesis in Zea mays L. Journal of Cell Science, 1980, 45, 211-44.	1.2	57
100	On the differential divisions and preprophase microtubule bands involved in the development of stomata of Vigna sinensis L. Journal of Cell Science, 1979, 37, 11-37.	1.2	56
101	On the differential divisions and preprophase microtubule bands involved in the development of stomata of Vigna sinensis L. Journal of Cell Science, 1979, 37, 11-37.	1.2	45
102	Histochemical studies on the oil-bodies of Marchantia paleacea bert. Protoplasma, 1978, 97, 13-29.	1.0	15
103	Ultrastructural studies on the oil bodies of <i>Marchantia paleacea</i> Bert. II. Advanced stages of oil-body cell differentiation: synthesis of lipophilic material. Canadian Journal of Botany, 1978, 56, 2268-2285.	1.2	19
104	Ultrastructural studies on the oil bodies of Marchantia paleacea Bert. I. Early stages of oil-body cell differentiation: origination of the oil body. Canadian Journal of Botany, 1978, 56, 2252-2267.	1.2	26
105	Fine structure of vegetative cells of Sphacelaria tribuloides Menegh. (Phaeophyceae, Sphacelariales) with special reference to some unusual proliferations of the plasmalemma. Phycologia, 1977, 16, 139-151.	0.6	20
106	On the fine structure of differentiating mucilage papillae of <i>Marchantia</i> . Canadian Journal of Botany, 1977, 55, 772-795.	1.2	41
107	Differentiation of stomatal meristemoids and guard cell mother cells into guard-like cells in Vigna sinensis leaves after colchicine treatment. Planta, 1977, 136, 103-114.	1.6	25
108	Associations between microbodies and a system of cytoplasmic tubules in oil-body cells of Marchantia. Planta, 1976, 131, 217-221.	1.6	12