Tabitha A Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4394139/publications.pdf

Version: 2024-02-01

84 papers 6,655 citations

32 h-index 76900 74 g-index

92 all docs 92 docs citations 92 times ranked 15075 citing authors

#	Article	IF	Citations
1	Molecular and Pathology Features of Colorectal Tumors and Patient Outcomes Are Associated with <i>Fusobacterium nucleatum</i> and Its Subspecies <i>animalis</i> ancer Epidemiology Biomarkers and Prevention, 2022, 31, 210-220.	2.5	19
2	Genome-wide association study identifies tumor anatomical site-specific risk variants for colorectal cancer survival. Scientific Reports, 2022, 12, 127.	3.3	6
3	Genetic variants associated with circulating Câ€reactive protein levels and colorectal cancer survival: Sexâ€specific and lifestyle factors specific associations. International Journal of Cancer, 2022, 150, 1447-1454.	5.1	2
4	Risk Stratification for Early-Onset Colorectal Cancer Using a Combination of Genetic and Environmental Risk Scores: An International Multi-Center Study. Journal of the National Cancer Institute, 2022, , .	6.3	15
5	Diabetes mellitus in relation to colorectal tumor molecular subtypes ―a pooled analysis of more than 9,000 cases. International Journal of Cancer, 2022, , .	5.1	2
6	Beyond GWAS of Colorectal Cancer: Evidence of Interaction with Alcohol Consumption and Putative Causal Variant for the 10q24.2 Region. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1077-1089.	2.5	6
7	Genetic Regulation of DNA Methylation Yields Novel Discoveries in GWAS of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1068-1076.	2.5	1
8	OUP accepted manuscript. Journal of the National Cancer Institute, 2022, , .	6.3	0
9	Association between germline variants and somatic mutations in colorectal cancer. Scientific Reports, 2022, 12, .	3.3	1
10	Identifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures. Nature Communications, 2022, $13,\ldots$	12.8	15
11	A Statistical Method for Association Analysis of Cell Type Compositions. Statistics in Biosciences, 2021, 13, 373-385.	1.2	O
12	Association of Body Mass Index With Colorectal Cancer Risk by Genome-Wide Variants. Journal of the National Cancer Institute, 2021, 113, 38-47.	6.3	14
13	Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects. Gastroenterology, 2021, 160, 1164-1178.e6.	1.3	36
14	Genetic Predictors of Severe Skin Toxicity in Patients with Stage III Colon Cancer Treated with Cetuximab: NCCTG N0147 (Alliance). Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 404-411.	2.5	1
15	Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut, 2021, 70, 1325-1334.	12.1	44
16	Association of <i>Fusobacterium nucleatum</i> with Specific T-cell Subsets in the Colorectal Carcinoma Microenvironment. Clinical Cancer Research, 2021, 27, 2816-2826.	7.0	36
17	Response to Li and Hopper. American Journal of Human Genetics, 2021, 108, 527-529.	6.2	5
18	Nongenetic Determinants of Risk forÂEarly-Onset Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab029.	2.9	39

#	Article	IF	CITATIONS
19	Genetically Predicted Circulating C-Reactive Protein Concentration and Colorectal Cancer Survival: A Mendelian Randomization Consortium Study. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1349-1358.	2.5	6
20	Association between Smoking and Molecular Subtypes of Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab056.	2.9	8
21	A Combined Proteomics and Mendelian Randomization Approach to Investigate the Effects of Aspirin-Targeted Proteins on Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 564-575.	2.5	10
22	Salicylic Acid and Risk of Colorectal Cancer: A Two-Sample Mendelian Randomization Study. Nutrients, 2021, 13, 4164.	4.1	3
23	DNA repair and cancer in colon and rectum: Novel players in genetic susceptibility. International Journal of Cancer, 2020, 146, 363-372.	5.1	40
24	Metaâ€enalysis of 16 studies of the association of alcohol with colorectal cancer. International Journal of Cancer, 2020, 146, 861-873.	5.1	89
25	Cumulative Burden of Colorectal Cancer–Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer. Gastroenterology, 2020, 158, 1274-1286.e12.	1.3	110
26	Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Serologic and Mendelian Randomization Analyses. Gastroenterology, 2020, 158, 1300-1312.e20.	1.3	90
27	Identification of Novel Loci and New Risk Variant in Known Loci for Colorectal Cancer Risk in East Asians. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 477-486.	2.5	25
28	Genetic Variant Associated With Survival of Patients With Stage II-III Colon Cancer. Clinical Gastroenterology and Hepatology, 2020, 18, 2717-2723.e3.	4.4	7
29	Postmenopausal Hormone Therapy and Colorectal Cancer Risk by Molecularly Defined Subtypes and Tumor Location. JNCI Cancer Spectrum, 2020, 4, pkaa042.	2.9	8
30	Landscape of somatic single nucleotide variants and indels in colorectal cancer and impact on survival. Nature Communications, 2020, 11, 3644.	12.8	55
31	Exploratory Genome-Wide Interaction Analysis of Nonsteroidal Anti-inflammatory Drugs and Predicted Gene Expression on Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1800-1808.	2.5	1
32	Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk. American Journal of Human Genetics, 2020, 107, 432-444.	6.2	124
33	A general framework for functionally informed set-based analysis: Application to a large-scale colorectal cancer study. PLoS Genetics, 2020, 16, e1008947.	3 . 5	6
34	Intake of Dietary Fruit, Vegetables, and Fiber and Risk of Colorectal Cancer According to Molecular Subtypes: A Pooled Analysis of 9 Studies. Cancer Research, 2020, 80, 4578-4590.	0.9	26
35	Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study. BMC Medicine, 2020, 18, 396.	5 . 5	76
36	Hemochromatosis risk genotype is not associated with colorectal cancer or age at its diagnosis. Human Genetics and Genomics Advances, 2020, 1, 100010.	1.7	3

#	Article	IF	CITATIONS
37	Incorporating Participant and Clinical Feedback into a Community-Based Participatory Research Study of Colorectal Cancer Among Alaska Native People. Journal of Community Health, 2020, 45, 803-811.	3.8	2
38	Telomere Maintenance Variants and Survival after Colorectal Cancer: Smoking- and Sex-Specific Associations. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1817-1824.	2.5	5
39	Association Between Molecular Subtypes of Colorectal Tumors and Patient Survival, Based on Pooled Analysis of 7 International Studies. Gastroenterology, 2020, 158, 2158-2168.e4.	1.3	34
40	Physical activity and risks of breast and colorectal cancer: a Mendelian randomisation analysis. Nature Communications, 2020, 11, 597.	12.8	193
41	Novel Common Genetic Susceptibility Loci for Colorectal Cancer. Journal of the National Cancer Institute, 2019, 111, 146-157.	6.3	129
42	Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer. Human Genetics, 2019, 138, 307-326.	3.8	44
43	Combined effect of modifiable and non-modifiable risk factors for colorectal cancer risk in a pooled analysis of 11 population-based studies. BMJ Open Gastroenterology, 2019, 6, e000339.	2.7	28
44	Discovery of common and rare genetic risk variants for colorectal cancer. Nature Genetics, 2019, 51, 76-87.	21.4	377
45	Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors. Gastroenterology, 2018, 154, 2152-2164.e19.	1.3	226
46	A Mixed-Effects Model for Powerful Association Tests in Integrative Functional Genomics. American Journal of Human Genetics, 2018, 102, 904-919.	6.2	30
47	Association of family history and survival in patients with colorectal cancer: a pooled analysis of eight epidemiologic studies. Cancer Medicine, 2018, 7, 2192-2199.	2.8	9
48	Genetic susceptibility markers for a breast-colorectal cancer phenotype: Exploratory results from genome-wide association studies. PLoS ONE, 2018, 13, e0196245.	2.5	9
49	Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia. International Journal of Cancer, 2017, 141, 1794-1802.	5.1	28
50	Enrichment of colorectal cancer associations in functional regions: Insight for using epigenomics data in the analysis of whole genome sequence-imputed GWAS data. PLoS ONE, 2017, 12, e0186518.	2.5	8
51	Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants. PLoS ONE, 2016, 11, e0157521.	2.5	8
52	Relationship of prediagnostic body mass index with survival after colorectal cancer: Stageâ€specific associations. International Journal of Cancer, 2016, 139, 1065-1072.	5.1	26
53	A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 2016, 48, 1279-1283.	21.4	2,421
54	CYP24A1 variant modifies the association between use of oestrogen plus progestogen therapy and colorectal cancer risk. British Journal of Cancer, 2016, 114, 221-229.	6.4	18

#	Article	IF	CITATIONS
55	Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk. Gastroenterology, 2016, 150, 1633-1645.	1.3	97
56	Common genetic variation and survival after colorectal cancer diagnosis: a genome-wide analysis. Carcinogenesis, 2016, 37, 87-95.	2.8	62
57	Genome-Wide Interaction Analyses between Genetic Variants and Alcohol Consumption and Smoking for Risk of Colorectal Cancer. PLoS Genetics, 2016, 12, e1006296.	3.5	38
58	Mendelian randomization study of height and risk of colorectal cancer. International Journal of Epidemiology, 2015, 44, 662-672.	1.9	55
59	Mendelian Randomization Study of Body Mass Index and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1024-1031.	2.5	67
60	A Model to Determine Colorectal Cancer Risk Using Common Genetic Susceptibility Loci. Gastroenterology, 2015, 148, 1330-1339.e14.	1.3	129
61	Red Meat Intake, NAT2, and Risk of Colorectal Cancer: A Pooled Analysis of 11 Studies. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 198-205.	2.5	38
62	Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nature Communications, 2015, 6, 7138.	12.8	138
63	Association of Aspirin and NSAID Use With Risk of Colorectal Cancer According to Genetic Variants. JAMA - Journal of the American Medical Association, 2015, 313, 1133.	7.4	171
64	A genome-wide association study for colorectal cancer identifies a risk locus in 14q23.1. Human Genetics, 2015, 134, 1249-1262.	3.8	28
65	Identification of a common variant with potential pleiotropic effect on risk of inflammatory bowel disease and colorectal cancer. Carcinogenesis, 2015, 36, 999-1007.	2.8	28
66	Genetic variants of adiponectin and risk of colorectal cancer. International Journal of Cancer, 2015, 137, 154-164.	5.1	16
67	Gene–Environment Interaction Involving Recently Identified Colorectal Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1824-1833.	2.5	48
68	No Evidence of Gene–Calcium Interactions from Genome-Wide Analysis of Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2971-2976.	2.5	9
69	Pleiotropic effects of genetic risk variants for other cancers on colorectal cancer risk: PAGE, GECCO and CCFR consortia. Gut, 2014, 63, 800-807.	12.1	35
70	Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer. PLoS Genetics, 2014, 10, e1004228.	3.5	81
71	No association between germline variation in catechol-O-methyltransferase and colorectal cancer survival in postmenopausal women. Menopause, 2014, 21, 415-420.	2.0	5
72	Estimating the heritability of colorectal cancer. Human Molecular Genetics, 2014, 23, 3898-3905.	2.9	114

#	Article	IF	CITATIONS
73	Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. Gastroenterology, 2013, 144, 799-807.e24.	1.3	292
74	Genetic Predictors of Circulating 25-Hydroxyvitamin D and Risk of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 2037-2046.	2.5	30
75	Confirmation of the Reported Association of Clonal Chromosomal Mosaicism with an Increased Risk of Incident Hematologic Cancer. PLoS ONE, 2013, 8, e59823.	2.5	26
76	Genome-Wide Association Study of Serum Selenium Concentrations. Nutrients, 2013, 5, 1706-1718.	4.1	14
77	A Pooled Analysis of Smoking and Colorectal Cancer: Timing of Exposure and Interactions with Environmental Factors. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1974-1985.	2.5	54
78	Characterization of Gene–Environment Interactions for Colorectal Cancer Susceptibility Loci. Cancer Research, 2012, 72, 2036-2044.	0.9	140
79	Genome-Wide Search for Gene-Gene Interactions in Colorectal Cancer. PLoS ONE, 2012, 7, e52535.	2.5	35
80	Billing for Medical Genetics and Genetic Counseling Services: A National Survey. Journal of Genetic Counseling, 2010, 19, 38-43.	1.6	29
81	The asthma consultative process: a collaborative approach to integrating genomics into public health practice. Preventing Chronic Disease, 2005, 2, A27.	3.4	1
82	Trade-related Infections: Global Traffic and Microbial Travel. EcoHealth, 2004, 1, 39-49.	2.0	5
83	Family history of diabetes as a potential public health tool. American Journal of Preventive Medicine, 2003, 24, 152-159.	3.0	263
84	Identification of members of the Wnt signaling pathway in the embryonic pituitary gland. Mammalian Genome, 2001, 12, 843-851.	2.2	63