Steven B Hawthorne

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4393864/steven-b-hawthorne-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

91
papers
4,897
citations
43
h-index

94
ext. papers

5,297
ext. citations

68
g-index

5.37
L-index

#	Paper Paper	IF	Citations
91	Comparison of CO2 and Produced Gas Hydrocarbons to Recover Crude Oil from Williston Basin Shale and Mudrock Cores at 10.3, 17.2, and 34.5 MPa and 110 LC. <i>Energy & Description (Content of the Content o</i>	7 2 .1	7
90	Turtles and Snakes: Evidence for Molecular Shape-Selective Migration of Crude Oil Hydrocarbons in the Bakken Petroleum System. <i>Energy & Dels</i> , 2021, 35, 10584-10596	4.1	1
89	Experimental Determinations of Minimum Miscibility Pressures Using Hydrocarbon Gases and CO2 for Crude Oils from the Bakken and Cut Bank Oil Reservoirs. <i>Energy & Discourge (Control of the Control of t</i>	4.1	12
88	Comparison of CO2 and Produced Gas Hydrocarbons to Dissolve and Mobilize Bakken Crude Oil at 10.3, 20.7, and 34.5 MPa and 110 LC. <i>Energy & Energy</i> 34, 10882-10893	4.1	5
87	A comparison of crude oil hydrocarbon mobilization by vaporization gas drive into methane, ethane, and carbon dioxide at 15.6 MPa and 42 LC. <i>Fuel</i> , 2019 , 249, 392-399	7.1	8
86	Hydrocarbon Recovery from Williston Basin Shale and Mudrock Cores with Supercritical CO2: 2. Mechanisms That Control Oil Recovery Rates and CO2 Permeation. <i>Energy & Description (Control Oil Recovery Rates)</i> 83, 6867-6867.	6 87 7	12
85	Hydrocarbon Recovery from Williston Basin Shale and Mudrock Cores with Supercritical CO2: Part 1. Method Validation and Recoveries from Cores Collected across the Basin. <i>Energy & Description</i> 2019, 33, 6857-6866	4.1	14
84	Enhanced Oil Recovery in Liquid R ich Shale Reservoirs: Laboratory to Field. <i>SPE Reservoir Evaluation and Engineering</i> , 2018 , 21, 137-159	2.3	77
83	Lab and Reservoir Study of Produced Hydrocarbon Molecular Weight Selectivity during CO2 Enhanced Oil Recovery. <i>Energy & Enhanced Oil Recovery</i> . <i>Energy & Enhanced Oil Recovery</i> . <i>Energy & Energy & Enhanced Oil Recovery</i> .	4.1	8
82	The Influence of Organics on Supercritical CO2 Migration in Organic-Rich Shales 2018,		8
81	Field Test of CO2 Injection in a Vertical Middle Bakken Well to Evaluate the Potential for Enhanced Oil Recovery and CO2 Storage 2018 ,		11
80	Improving Oil Recovery by Use of Carbon Dioxide in the Bakken Unconventional System: A Laboratory Investigation. <i>SPE Reservoir Evaluation and Engineering</i> , 2017 , 20, 602-612	2.3	53
79	Measured Crude Oil MMPs with Pure and Mixed CO2, Methane, and Ethane, and Their Relevance to Enhanced Oil Recovery from Middle Bakken and Bakken Shales 2017 ,		20
78	Integrating Petrographic and Petrophysical Analyses with CO2 Permeation and Oil Extraction and Recovery in the Bakken Tight Oil Formation 2017 ,		14
77	Advancing CO2 enhanced oil recovery and storage in unconventional oil play E xperimental studies on Bakken shales. <i>Applied Energy</i> , 2017 , 208, 171-183	10.7	130
76	Predicting toxicity to Hyalella azteca in pyrogenic-impacted sediments-Do we need to analyze for all 34 PAHs?. <i>Integrated Environmental Assessment and Management</i> , 2016 , 12, 493-9	2.5	1
75	Rapid and Simple Capillary-Rise/Vanishing Interfacial Tension Method To Determine Crude Oil Minimum Miscibility Pressure: Pure and Mixed CO2, Methane, and Ethane. <i>Energy & Description</i> , 30, 6365-6372	4.1	61

74	Enhanced Oil Recovery in Liquid-Rich Shale Reservoirs: Laboratory to Field 2015,		44
73	Sediment bioaccumulation test with Lumbriculus variegatus: effects of feeding. <i>Archives of Environmental Contamination and Toxicology</i> , 2015 , 68, 696-706	3.2	6
7 ²	Review of polyoxymethylene passive sampling methods for quantifying freely dissolved porewater concentrations of hydrophobic organic contaminants. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 710-20	3.8	36
71	Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study. <i>Waste Management</i> , 2014 , 34, 1815-22	8.6	16
70	A Rapid Method for Determining CO2/oil MMP and Visual Observations of CO2/Oil Interactions at Reservoir Conditions. <i>Energy Procedia</i> , 2014 , 63, 7724-7731	2.3	12
69	Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations. <i>Integrated Environmental Assessment and Management</i> , 2014 , 10, 197-209	2.5	122
68	Evaluation of PCB bioaccumulation by Lumbriculus variegatus in field-collected sediments. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1495-503	3.8	10
67	Hydrocarbon Mobilization Mechanisms from Upper, Middle, and Lower Bakken Reservoir Rocks Exposed to CO2 2013 ,		87
66	Comment on "comprehensive profiling of coal tar and crude oil to obtain mass spectra and retention indices for alkylated PAH shows why current methods err". <i>Environmental Science & Technology</i> , 2012 , 46, 11475-6; discussion 11477-8	10.3	4
65	Investigating differential binding of polychlorinated dibenzo-p-dioxins/dibenzofurans in soil and soil components using selective supercritical fluid extraction. <i>Chemosphere</i> , 2012 , 88, 261-9	8.4	3
64	Measuring picogram per liter concentrations of freely dissolved parent and alkyl PAHs (PAH-34), using passive sampling with polyoxymethylene. <i>Analytical Chemistry</i> , 2011 , 83, 6754-61	7.8	69
63	Assessment of supercritical fluid extraction use in whole sediment toxicity identification evaluations. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 819-27	3.8	6
62	Comparison of polymeric samplers for accurately assessing PCBs in pore waters. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1288-96	3.8	57
61	Improving predictability of sediment-porewater partitioning models using trends observed with PCB-contaminated field sediments. <i>Environmental Science & Environmental Science</i>	10.3	29
60	Predicting pore water EPA-34 PAH concentrations and toxicity in pyrogenic-impacted sediments using pyrene content. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	45
59	Particle-scale measurement of PAH aqueous equilibrium partitioning in impacted sediments. <i>Environmental Science & Environmental Science & amp; Technology, 2010</i> , 44, 1204-10	10.3	34
58	Response to Comment on More of EPAS SPARC Online Calculator The Need for High Quality Predictions of Chemical Properties Environmental Science & Envir	10.3	3
57	An evaluation of the ability of chemical measurements to predict polycyclic aromatic hydrocarbon-contaminated sediment toxicity to Hyalella azteca. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 1545-50	3.8	25

56	Measuring low picogram per liter concentrations of freely dissolved polychlorinated biphenyls in sediment pore water using passive sampling with polyoxymethylene. <i>Analytical Chemistry</i> , 2009 , 81, 947	72-80	58
55	Solid-phase-microextraction measurement of 62 polychlorinated biphenyl congeners in milliliter sediment pore water samples and determination of K(DOC) values. <i>Analytical Chemistry</i> , 2009 , 81, 6936	-438	41
54	Laser-induced fluorescence coupled with solid-phase microextraction for in situ determination of PAHs in sediment pore water. <i>Environmental Science & Environmental Science &</i>	10.3	17
53	Tracing Contributions of Benzene from Outdoor to Indoor Air. <i>Environmental Forensics</i> , 2008 , 9, 96-106	1.6	2
52	Predicting bioavailability of sediment polycyclic aromatic hydrocarbons to Hyalella azteca using equilibrium partitioning, supercritical fluid extraction, and pore water concentrations. <i>Environmental Science & Environmental Science & Environment</i>	10.3	79
51	Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction. <i>Environmental Science & Environmental Sci</i>	10.3	102
50	Greatly reduced bioavailability and toxicity of polycyclic aromatic hydrocarbons to Hyalella azteca in sediments from manufactured-gas plant sites. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 114	6 ² 5 ⁸ 7	28
49	Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site soils. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 1809-17	3.8	34
48	Measured partition coefficients for parent and alkyl polycyclic aromatic hydrocarbons in 114 historically contaminated sediments: part 2. Testing the K(OC)K(BC) two carbon-type model. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 2505-16	3.8	52
47	Measurement of total polycyclic aromatic hydrocarbon concentrations in sediments and toxic units used for estimating risk to benthic invertebrates at manufactured gas plant sites. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 287-96	3.8	90
46	Measured partitioning coefficients for parent and alkyl polycyclic aromatic hydrocarbons in 114 historically contaminated sediments: part 1. K(OC) values. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 2901-11	3.8	87
45	Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials: evidence by supercritical fluid extraction. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	106
44	Persistence and biodegradation of monoethanolamine and 2-propanolamine at an abandoned industrial site. <i>Environmental Science & Environmental Science</i>	10.3	24
43	Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K(DOC) values. <i>Environmental Science & Environmental Science</i>	10.3	112
42	Reduction in acute toxicity of soils to terrestrial oligochaetes following the removal of bioavailable polycyclic aromatic hydrocarbons with mild supercritical carbon dioxide extraction. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 1893-5	3.8	19
41	Improving risk assessments for manufactured gas plant soils by measuring PAH availability. <i>Integrated Environmental Assessment and Management</i> , 2005 , 1, 259-66	2.5	7
40	Evidence for very tight sequestration of BTEX compounds in manufactured gas plant soils based on selective supercritical fluid extraction and soil/water partitioning. <i>Environmental Science & Technology</i> , 2003 , 37, 3587-94	10.3	29
39	Thermodynamic and kinetic models for the extraction of essential oil from savory and polycyclic aromatic hydrocarbons from soil with hot (subcritical) water and supercritical CO2. <i>Journal of Chromatography A</i> , 2002 , 975, 175-88	4.5	82

(1998-2002)

38	Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercritical carbon dioxide extraction. <i>Environmental Science & Dioxide extraction</i> , 2002, 36, 4795-803	10.3	111
37	Zero-valent metal accelerators for the dechlorination of pentachlorophenol (PCP) in subcritical water. <i>Green Chemistry</i> , 2002 , 4, 17-23	10	22
36	Selective extraction of oxygenates from savory and peppermint using subcritical water. <i>Flavour and Fragrance Journal</i> , 2001 , 16, 64-73	2.5	94
35	PAH release during water desorption, supercritical carbon dioxide extraction, and field bioremediation. <i>Environmental Science & Environmental Science</i>	10.3	73
34	Comparisons of soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. <i>Journal of Chromatography A</i> , 2000 , 892, 421-33	4.5	322
33	Introducing selective supercritical fluid extraction as a new tool for determining sorption/desorption behavior and bioavailability of persistent organic pollutants in sediment. <i>Journal of Proteomics</i> , 2000 , 43, 295-311		56
32	Pilot-Scale Destruction of TNT, RDX, and HMX on Contaminated Soils Using Subcritical Water. <i>Environmental Science & Environmental Science & Environme</i>	10.3	70
31	Correlating Selective Supercritical Fluid Extraction with Bioremediation Behavior of PAHs in a Field Treatment Plot. <i>Environmental Science & Environmental Science & Environm</i>	10.3	99
30	Response to Comments on Adsorption versus Absorption of Polychlorinated Biphenyls onto Solid-Phase Microextraction Coatings. <i>Analytical Chemistry</i> , 2000 , 72, 642-643	7.8	93
29	Pilot-Scale Subcritical Water Remediation of Polycyclic Aromatic Hydrocarbon- and Pesticide-Contaminated Soil. <i>Environmental Science & Environmental </i>	10.3	127
28	Solubility of Liquid Organics of Environmental Interest in Subcritical (Hot/Liquid) Water from 298 K to 473 K. <i>Journal of Chemical & Engineering Data</i> , 2000 , 45, 78-81	2.8	66
27	Vaporization of Polycyclic Aromatic Hydrocarbons (PAHs) from Sediments at Ambient Conditions. <i>Environmental Science & Environmental &</i>	10.3	33
26	Solubility of Liquid Organic Flavor and Fragrance Compounds in Subcritical (Hot/Liquid) Water from 298 K to 473 K. <i>Journal of Chemical & Engineering Data</i> , 2000 , 45, 315-318	2.8	76
25	Heterogenic catalytic hydrolysis and analysis of natural pyrethrins in subcritical water coupled with solid phase microextraction (SPME) and GC-MS. <i>Freseniust Journal of Analytical Chemistry</i> , 1999 , 364, 625-630		11
24	Determining PCB Sorption/Desorption Behavior on Sediments Using Selective Supercritical Fluid Extraction. 2. Describing PCB Extraction with Simple Diffusion Models. <i>Environmental Science & Environmental Science & Technology</i> , 1999 , 33, 2204-2212	10.3	30
23	Determining PCB Sorption/Desorption Behavior on Sediments Using Selective Supercritical Fluid Extraction. 1. Desorption from Historically Contaminated Samples. <i>Environmental Science & Environmental Science & Technology</i> , 1999 , 33, 2193-2203	10.3	62
22	Determining PCB Sorption/Desorption Behavior on Sediments Using Selective Supercritical Fluid Extraction. 3. Sorption from Water. <i>Environmental Science & Environmental Scien</i>	10.3	42
21	Method for determining the solubilities of hydrophobic organics in subcritical water. <i>Analytical Chemistry</i> , 1998 , 70, 1618-21	7.8	149

20	Class-Selective Extraction of Polar, Moderately Polar, and Nonpolar Organics from Hydrocarbon Wastes Using Subcritical Water. <i>Environmental Science & Environmental Science &</i>	10.3	121
19	Subcritical Water Chromatography with Flame Ionization Detection. <i>Analytical Chemistry</i> , 1997 , 69, 623-	- 6 28	125
18	Determination of Aromatic Compounds in Water by Solid Phase Microextraction and Ultraviolet Absorption Spectroscopy. 1. Methodology. <i>Analytical Chemistry</i> , 1997 , 69, 1197-1203	7.8	47
17	Toluene Solubility in Water and Organic Partitioning from Gasoline and Diesel Fuel into Water at Elevated Temperatures and Pressures. <i>Journal of Chemical & Elevated States Stat</i>	2.8	43
16	Solubility of Polycyclic Aromatic Hydrocarbons in Supercritical Carbon Dioxide from 313 K to 523 K and Pressures from 100 bar to 450 bar. <i>Journal of Chemical & Data</i> , 1996, 41, 779-786	2.8	103
15	Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction. <i>Analytical Chemistry</i> , 1996 , 68, 144-55	7.8	181
14	Vapor-Phase and Particulate-Associated Pesticides and PCB Concentrations in Eastern North Dakota Air Samples. <i>Journal of Environmental Quality</i> , 1996 , 25, 594-600	3.4	24
13	Kinetic Study of Supercritical Fluid Extraction of Organic Contaminants from Heterogeneous Environmental Samples with Carbon Dioxide and Elevated Temperatures. <i>Analytical Chemistry</i> , 1995 , 67, 1727-1736	7.8	111
12	Effect of SFE Flow Rate on Extraction Rates: Classifying Sample Extraction Behavior. <i>Analytical Chemistry</i> , 1995 , 67, 2723-2732	7.8	76
11	Determination of Solubilities of Organic Solutes in Supercritical CO2 by Online Flame Ionization Detection. <i>Analytical Chemistry</i> , 1995 , 67, 273-279	7.8	42
10	Effect of the matrix on the kinetics of dynamic supercritical fluid extraction. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 1333		24
9	Supercritical fluid extraction with carbon dioxide for the determination of total petroleum hydrocarbons in soil. <i>Fuel</i> , 1993 , 72, 1015-1023	7.1	37
8	Coupled solid phase extraction upercritical fluid extraction n-line gas chromatography of explosives from water. <i>Journal of High Resolution Chromatography</i> , 1993 , 16, 473-478		19
7	Comparison of hydrodistillation and supercritical fluid extraction for the determination of essential oils in aromatic plants. <i>Journal of Chromatography A</i> , 1993 , 634, 297-308	4.5	74
6	Supercritical Fluid Extraction of Polar Analytes Using Modified CO2 and In Situ Chemical Derivation. <i>ACS Symposium Series</i> , 1992 , 165-178	0.4	2
5	Analytical-Scale Extraction of Environmental Samples Using Supercritical Fluids. <i>ACS Symposium Series</i> , 1992 , 206-221	0.4	2
4	The Effect of solubility on the kinetics of dynamic supercritical-fluid extraction. <i>Journal of Supercritical Fluids</i> , 1992 , 5, 207-212	4.2	49
3	A model for dynamic extraction using a supercritical fluid. <i>Journal of Supercritical Fluids</i> , 1990 , 3, 143-14	.94.2	158

LIST OF PUBLICATIONS

Coupled SFE-GC: A Rapid and Simple Technique for Extracting, Identifying, and Quantitating 2 Organic Analytes from Solids and Sorbent Resins. *Journal of Chromatographic Science*, **1989**, 27, 347-354^{1.4}

86

Preparation of deuterated aromatic hydrocarbons, heteroatom-containing aromatics, and polychlorinated biphenyls as internal standards for GC/MS analysis. Fresenius Zeitschrift Fil Analytische Chemie, **1989**, 334, 421-426

15