Miki Imanishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4393345/publications.pdf Version: 2024-02-01

MIKI IMANISHI

#	Article	IF	CITATIONS
1	Artificial Nanocage Formed via Self-Assembly of β-Annulus Peptide for Delivering Biofunctional Proteins into Cell Interiors. Bioconjugate Chemistry, 2022, 33, 311-320.	3.6	9
2	L17ER4: A cell-permeable attenuated cationic amphiphilic lytic peptide. Bioorganic and Medicinal Chemistry, 2022, 61, 116728.	3.0	3
3	Grafting Hydrophobic Amino Acids Critical for Inhibition of Protein–Protein Interactions on a Cell-Penetrating Peptide Scaffold. Molecular Pharmaceutics, 2022, 19, 558-567.	4.6	3
4	Recognition of G-quadruplex RNA by a crucial RNA methyltransferase component, METTL14. Nucleic Acids Research, 2022, 50, 449-457.	14.5	21
5	Mechanisms and Strategies for Determining m ⁶ A RNA Modification Sites by Natural and Engineered m ⁶ A Effector Proteins. Chemistry - an Asian Journal, 2022, 17, .	3.3	3
6	Split luciferase-based estimation of cytosolic cargo concentration delivered intracellularly via attenuated cationic amphiphilic lytic peptides. Bioorganic and Medicinal Chemistry Letters, 2022, 72, 128875.	2.2	0
7	Discovery of a Macropinocytosisâ€Inducing Peptide Potentiated by Mediumâ€Mediated Intramolecular Disulfide Formation. Angewandte Chemie - International Edition, 2021, 60, 11928-11936.	13.8	11
8	Discovery of a Macropinocytosisâ€Inducing Peptide Potentiated by Mediumâ€Mediated Intramolecular Disulfide Formation. Angewandte Chemie, 2021, 133, 12035-12043.	2.0	2
9	Use of homoarginine to obtain attenuated cationic membrane lytic peptides. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127925.	2.2	7
10	Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides. Angewandte Chemie, 2021, 133, 19957-19965.	2.0	2
11	Titelbild: Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides (Angew. Chem. 36/2021). Angewandte Chemie, 2021, 133, 19645-19645.	2.0	0
12	Liquid Droplet Formation and Facile Cytosolic Translocation of IgG in the Presence of Attenuated Cationic Amphiphilic Lytic Peptides. Angewandte Chemie - International Edition, 2021, 60, 19804-19812.	13.8	21
13	Programmable RNA methylation and demethylation using PUF RNA binding proteins. Chemical Communications, 2020, 56, 1365-1368.	4.1	23
14	Conversion of cationic amphiphilic lytic peptides to cellâ€penetration peptides. Peptide Science, 2020, 112, e24144.	1.8	11
15	Identification of synthetic inhibitors for the DNA binding of intrinsically disordered circadian clock transcription factors. Chemical Communications, 2020, 56, 11203-11206.	4.1	5
16	Effective RNA Regulation by Combination of Multiple Programmable RNA-Binding Proteins. Applied Sciences (Switzerland), 2020, 10, 6803.	2.5	3
17	Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules. Angewandte Chemie, 2020, 132, 20165-20173.	2.0	6
18	Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules. Angewandte Chemie - International Edition, 2020, 59, 19990-19998.	13.8	36

Μικι Ιμανισμι

#	Article	IF	CITATIONS
19	Stimulating Macropinocytosis for Intracellular Nucleic Acid and Protein Delivery: A Combined Strategy with Membrane-Lytic Peptides To Facilitate Endosomal Escape. Bioconjugate Chemistry, 2020, 31, 547-553.	3.6	31
20	Enhancing the activity of membrane remodeling epsin-peptide by trimerization. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127190.	2.2	12
21	Modified nucleobase-specific gene regulation using engineered transcription activator-like effectors. Advanced Drug Delivery Reviews, 2019, 147, 59-65.	13.7	6
22	Loosening of Lipid Packing by Cell‣urface Recruitment of Amphiphilic Peptides by Coiledâ€Coil Tethering. ChemBioChem, 2019, 20, 2151-2159.	2.6	5
23	Nested PUF Proteins: Extending Target RNA Elements for Gene Regulation. ChemBioChem, 2018, 19, 171-176.	2.6	6
24	Sequence-specific 5mC detection in live cells based on the TALE-split luciferase complementation system. Analyst, The, 2018, 143, 3793-3797.	3.5	2
25	Detection of <i>N</i> ⁶ -methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chemical Communications, 2017, 53, 12930-12933.	4.1	113
26	<scp>C</scp> almodulin EFâ€hand peptides as Ca ²⁺ â€switchable recognition tags. Biopolymers, 2017, 108, e22937.	2.4	1
27	Preparation of peptide thioesters from naturally occurring sequences using reaction sequence consisting of regioselective Sâ€eyanylation and hydrazinolysis. Biopolymers, 2016, 106, 531-546.	2.4	16
28	Sequence-specific recognition of methylated DNA by an engineered transcription activator-like effector protein. Chemical Communications, 2016, 52, 14238-14241.	4.1	13
29	Controlling leucine-zipper partner recognition in cells through modification of a–g interactions. Chemical Communications, 2014, 50, 6364-6367.	4.1	8
30	Creating a TALE protein with unbiased $5\hat{a}\in^2$ -T binding. Biochemical and Biophysical Research Communications, 2013, 441, 262-265.	2.1	21
31	Identification of cellular proteins interacting with octaarginine (R8) cell-penetrating peptide by photo-crosslinking. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3738-3740.	2.2	20
32	Construction of a Ca ²⁺ -Gated Artificial Channel by Fusing Alamethicin with a Calmodulin-Derived Extramembrane Segment. Bioconjugate Chemistry, 2013, 24, 188-195.	3.6	5
33	Dipicolylamine as a unique structural switching element for helical peptides. Organic and Biomolecular Chemistry, 2012, 10, 6062.	2.8	10
34	Construction of a Rhythm Transfer System That Mimics the Cellular Clock. ACS Chemical Biology, 2012, 7, 1817-1821.	3.4	5
35	Zn(II) Binding and DNA Binding Properties of Ligand-Substituted CXHH-Type Zinc Finger Proteins. Biochemistry, 2012, 51, 3342-3348.	2.5	21
36	Signal Transduction Using an Artificial Receptor System that Undergoes Dimerization Upon Addition of a Bivalent Leucineâ€Zipper Ligand. Angewandte Chemie - International Edition, 2012, 51, 7464-7467.	13.8	39

Miki Imanishi

#	Article	IF	CITATIONS
37	Rational design of DNA sequenceâ€specific zinc fingers. FEBS Letters, 2012, 586, 918-923.	2.8	5
38	An Arginine Residue Instead of a Conserved Leucine Residue in the Recognition Helix of the Finger 3 of Zif268 Stabilizes the Domain Structure and Mediates DNA Binding. Biochemistry, 2011, 50, 6266-6272.	2.5	8
39	Control of Circadian Phase by an Artificial Zinc Finger Transcription Regulator. Angewandte Chemie - International Edition, 2011, 50, 9396-9399.	13.8	3
40	Octa-Arginine Mediated Delivery of Wild-Type Lnk Protein Inhibits TPO-Induced M-MOK Megakaryoblastic Leukemic Cell Growth by Promoting Apoptosis. PLoS ONE, 2011, 6, e23640.	2.5	31
41	Metalâ€Stimulated Regulation of Transcription by an Artificial Zincâ€Finger Protein. ChemBioChem, 2010, 11, 1653-1655.	2.6	10
42	Expressed protein ligation for the preparation of fusion proteins with cell penetrating peptides for endotoxin removal and intracellular delivery. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2249-2257.	2.6	15
43	Zinc finger–zinc finger interaction between the transcription factors, GATA-1 and Sp1. Biochemical and Biophysical Research Communications, 2010, 400, 625-630.	2.1	7
44	Non-Fokl-Based Zinc Finger Nucleases. Methods in Molecular Biology, 2010, 649, 337-349.	0.9	7
45	Cobalt(II)â€Responsive DNA Binding of a GCN4â€bZIP Protein Containing Cysteine Residues Functionalized with Iminodiacetic Acid. Angewandte Chemie - International Edition, 2009, 48, 6853-6856.	13.8	20
46	Cytosolic Targeting of Macromolecules Using a pH-Dependent Fusogenic Peptide in Combination with Cationic Liposomes. Bioconjugate Chemistry, 2009, 20, 953-959.	3.6	81
47	Positive and negative cooperativity of modularly assembled zinc fingers. Biochemical and Biophysical Research Communications, 2009, 387, 440-443.	2.1	13
48	New Redesigned Zincâ€Finger Proteins: Design Strategy and Its Application. Chemistry - A European Journal, 2008, 14, 3236-3249.	3.3	64
49	Effects of Bulkiness and Hydrophobicity of an Aliphatic Amino Acid in the Recognition Helix of the GAGA Zinc Finger on the Stability of the Hydrophobic Core and DNA Binding Affinity. Biochemistry, 2008, 47, 11717-11724.	2.5	6
50	Rapid Transcriptional Activity <i>in Vivo</i> and Slow DNA Binding <i>in Vitro</i> by an Artificial Multi-Zinc Finger Protein. Biochemistry, 2008, 47, 10171-10177.	2.5	12
51	DNA-Binding Ability of GAGA Zinc Finger Depends on the Nature of Amino Acids Present in the β-Hairpin. Biochemistry, 2007, 46, 7506-7513.	2.5	10
52	α-Helical Linker of an Artificial 6-Zinc Finger Peptide Contributes to Selective DNA Binding to a Discontinuous Recognition Sequence. Biochemistry, 2007, 46, 8517-8524.	2.5	24
53	Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3. Journal of Cell Biology, 2006, 174, 931-937.	5.2	105
54	Effects of linking 15-zinc finger domains on DNA binding specificity and multiple DNA binding modes. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2197-2201.	2.2	10

Μικι Ιμανισμι

#	Article	IF	CITATIONS
55	Site-specific DNA cleavage by artificial zinc finger-type nuclease with cerium-binding peptide. Biochemical and Biophysical Research Communications, 2005, 330, 247-252.	2.1	30
56	An artificial six-zinc finger peptide with polyarginine linker: Selective binding to the discontinuous DNA sequences. Biochemical and Biophysical Research Communications, 2005, 333, 167-173.	2.1	9
57	Swapping of the β-Hairpin Region between Sp1 and GLI Zinc Fingers: Significant Role of the β-Hairpin Region in DNA Binding Properties of C2H2-type Zinc Finger Peptidesâ€. Biochemistry, 2005, 44, 2523-2528.	2.5	12
58	Exchange of Histidine Spacing between Sp1 and GLI Zinc Fingers:Â Distinct Effect of Histidine Spacing-Linker Region on DNA Bindingâ€. Biochemistry, 2004, 43, 6352-6359.	2.5	7
59	Creation and characteristics of unnatural CysHis3-type zinc finger protein. Biochemical and Biophysical Research Communications, 2004, 325, 421-425.	2.1	13
60	DNA cleavage characteristics of non-protein enediyne antibiotic N1999A2. Biochemical and Biophysical Research Communications, 2003, 306, 87-92.	2.1	17
61	Artificial DNA-Bending Six-Zinc Finger Peptides with Different Charged Linkers:  Distinct Kinetic Properties of DNA Bindings. Biochemistry, 2002, 41, 1328-1334.	2.5	31
62	Multiconnection of Identical Zinc Finger: Implication for DNA Binding Affinity and Unit Modulation of the Three Zinc Finger Domainâ€. Biochemistry, 2001, 40, 2932-2941.	2.5	17
63	Design of novel zinc finger proteins: towards artificial control of specific gene expression. European Journal of Pharmaceutical Sciences, 2001, 13, 91-97.	4.0	25
64	DNA-Bending Finger: Artificial Design of 6-Zinc Finger Peptides with Polyglycine Linker and Induction of DNA Bendingâ€. Biochemistry, 2000, 39, 4383-4390.	2.5	37
65	Artificial Nine Zinc-Finger Peptide with 30 Base Pair Binding Sites. Biochemistry, 1998, 37, 13827-13834.	2.5	69