Philip J Bilan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4393274/publications.pdf

Version: 2024-02-01

		394421	5	501196	
28	2,741	19		28	
papers	citations	h-index		g-index	
30	30	30		4478	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	Citations
1	Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nature Neuroscience, 2015, 18, 1081-1083.	14.8	1,041
2	Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism: Clinical and Experimental, 2016, 65, 124-139.	3.4	304
3	Update on GLUT4 Vesicle Traffic: A Cornerstone of Insulin Action. Trends in Endocrinology and Metabolism, 2017, 28, 597-611.	7.1	210
4	Actin filaments participate in the relocalization of phosphatidylinositol3-kinase to glucose transporter-containing compartments and in the stimulation of glucose uptake in 3T3-L1 adipocytes. Biochemical Journal, 1998, 331, 917-928.	3.7	164
5	Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Research, 2017, 27, 1309-1326.	12.0	148
6	VAMP2, but Not VAMP3/Cellubrevin, Mediates Insulin-dependent Incorporation of GLUT4 into the Plasma Membrane of L6 Myoblasts. Molecular Biology of the Cell, 2000, 11, 2403-2417.	2.1	102
7	Rac1 governs exerciseâ€stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. Journal of Physiology, 2016, 594, 4997-5008.	2.9	87
8	Role of the actin cytoskeleton in insulin action. Microscopy Research and Technique, 1999, 47, 79-92.	2.2	79
9	Circulating NOD1 Activators and Hematopoietic NOD1 Contribute to Metabolic Inflammation and Insulin Resistance. Cell Reports, 2017, 18, 2415-2426.	6.4	70
10	Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E35-E44.	3.5	59
11	Acute and long-term effects of insulin-like growth factor I on glucose transporters in muscle cells Translocation and biosynthesis. FEBS Letters, 1992, 298, 285-290.	2.8	52
12	Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL- $1\hat{l}^2$ and IL- 18 release. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E825-E835.	3.5	49
13	Contraction-related stimuli regulate GLUT4 traffic in C ₂ C ₁₂ -GLUT4 <i>myc</i> skeletal muscle cells. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E1058-E1071.	3.5	44
14	A complex of Rab13 with MICAL-L2 and \hat{l}_{\pm} -actinin-4 is essential for insulin-dependent GLUT4 exocytosis. Molecular Biology of the Cell, 2016, 27, 75-89.	2.1	44
15	Nucleotides Released From Palmitate-Challenged Muscle Cells Through Pannexin-3 Attract Monocytes. Diabetes, 2014, 63, 3815-3826.	0.6	40
16	Contracting C ₂ C ₁₂ myotubes release CCL2 in an NF-κB-dependent manner to induce monocyte chemoattraction. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E160-E170.	3. 5	33
17	Electrical pulse stimulation induces GLUT4 translocation in C ₂ C ₁₂ myotubes that depends on Rab8A, Rab13, and Rab14. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E478-E493.	3.5	31
18	Communication Between Autophagy and Insulin Action: At the Crux of Insulin Action-Insulin Resistance?. Frontiers in Cell and Developmental Biology, 2021, 9, 708431.	3.7	27

#	Article	IF	CITATIONS
19	Electrical pulse stimulation induces GLUT4 translocation in a Racâ€Aktâ€dependent manner in C2C12 myotubes. FEBS Letters, 2018, 592, 644-654.	2.8	25
20	Insulin uptake and action in microvascular endothelial cells of lymphatic and blood origin. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E204-E217.	3.5	24
21	Nucleotides released from palmitate-activated murine macrophages attract neutrophils. Journal of Biological Chemistry, 2020, 295, 4902-4911.	3.4	21
22	The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes. ELife, $2015,4,.$	6.0	20
23	Opposite Effects of Insulin on Focal Adhesion Proteins in 3T3-L1 Adipocytes and in Cells Overexpressing the Insulin Receptor. Molecular Biology of the Cell, 1998, 9, 3057-3069.	2.1	19
24	Sphingolipid changes do not underlie fatty acid-evoked GLUT4 insulin resistance nor inflammation signals in muscle cells[S]. Journal of Lipid Research, 2018, 59, 1148-1163.	4.2	15
25	Deconstructing metabolic inflammation using cellular systems. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E339-E347.	3.5	11
26	Complexin-2 redistributes to the membrane of muscle cells in response to insulin and contributes to GLUT4 translocation. Biochemical Journal, 2021, 478, 407-422.	3.7	8
27	GLUT4-overexpressing engineered muscle constructs as a therapeutic platform to normalize glycemia in diabetic mice. Science Advances, 2021, 7, eabg3947.	10.3	8
28	GLUT4 Translocation in Single Muscle Cells in Culture: Epitope Detection by Immunofluorescence. Methods in Molecular Biology, 2018, 1713, 175-192.	0.9	6