Spyridon Varlas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4393181/publications.pdf

Version: 2024-02-01

430874 501196 27 1,622 18 28 citations g-index h-index papers 32 32 32 1592 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Permeable Protein-Loaded Polymersome Cascade Nanoreactors by Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 1263-1267.	4.8	193
2	Getting into Shape: Reflections on a New Generation of Cylindrical Nanostructures' Self-Assembly Using Polymer Building Blocks. Journal of the American Chemical Society, 2019, 141, 2742-2753.	13.7	186
3	Confinement of Therapeutic Enzymes in Selectively Permeable Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA) Reduces Antibody Binding and Proteolytic Susceptibility. ACS Central Science, 2018, 4, 718-723.	11.3	181
4	pH-Sensitive nanogates based on poly(<scp>l</scp> -histidine) for controlled drug release from mesoporous silica nanoparticles. Polymer Chemistry, 2016, 7, 1475-1485.	3.9	103
5	Tuning the membrane permeability of polymersome nanoreactors developed by aqueous emulsion polymerization-induced self-assembly. Nanoscale, 2019, 11, 12643-12654.	5 . 6	91
6	Ringâ€Opening Metathesis Polymerization in Aqueous Media Using a Macroinitiator Approach. Angewandte Chemie - International Edition, 2018, 57, 10672-10676.	13.8	79
7	Predicting Monomers for Use in Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2018, 57, 15733-15737.	13.8	78
8	Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Progress in Polymer Science, 2020, 107, 101278.	24.7	77
9	Ring-opening metathesis polymerization-induced self-assembly (ROMPISA). Chemical Communications, 2019, 55, 9066-9071.	4.1	75
10	Smart polymersomes and hydrogels from polypeptide-based polymer systems through $\hat{l}\pm$ -amino acid N-carboxyanhydride ring-opening polymerization. From chemistry to biomedical applications. Progress in Polymer Science, 2018, 83, 28-78.	24.7	74
11	Polymerization-Induced Polymersome Fusion. Journal of the American Chemical Society, 2019, 141, 20234-20248.	13.7	68
12	Photoinitiated Polymerization-Induced Self-Assembly in the Presence of Surfactants Enables Membrane Protein Incorporation into Vesicles. Macromolecules, 2018, 51, 6190-6201.	4.8	63
13	Poly(Pentafluorophenyl Methacrylate)â€Based Nanoâ€Objects Developed by Photoâ€PISA as Scaffolds for Postâ€Polymerization Functionalization. Macromolecular Rapid Communications, 2019, 40, e1800460.	3.9	50
14	Predicting Monomers for Use in Aqueous Ring-Opening Metathesis Polymerization-Induced Self-Assembly. ACS Macro Letters, 2019, 8, 466-472.	4.8	50
15	Poly(sarcosine)-Based Nano-Objects with Multi-Protease Resistance by Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA). Biomacromolecules, 2018, 19, 4453-4462.	5.4	44
16	Nickel-Catalyzed Coordination Polymerization-Induced Self-Assembly of Helical Poly(aryl isocyanide)s. ACS Macro Letters, 2020, 9, 226-232.	4.8	35
17	It is Better with Salt: Aqueous Ring-Opening Metathesis Polymerization at Neutral pH. Journal of the American Chemical Society, 2020, 142, 13878-13885.	13.7	33
18	Preparation of hybrid tripleâ€stimuli responsive nanogels based on poly(<scp>L</scp> â€histidine). Journal of Polymer Science Part A, 2016, 54, 1278-1288.	2.3	28

#	Article	IF	CITATIONS
19	Complementary Nucleobase Interactions Drive the Hierarchical Self-Assembly of Core–Shell Bottlebrush Block Copolymers toward Cylindrical Supramolecules. Macromolecules, 2020, 53, 9747-9757.	4.8	21
20	Predicting Monomers for Use in Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie, 2018, 130, 15959-15963.	2.0	17
21	Ringâ€Opening Metathesis Polymerization in Aqueous Media Using a Macroinitiator Approach. Angewandte Chemie, 2018, 130, 10832-10836.	2.0	17
22	The Importance of Cooperativity in Polymer Blending: Toward Controlling the Thermoresponsive Behavior of Blended Block Copolymer Micelles. Macromolecular Rapid Communications, 2020, 41, e1900599.	3.9	17
23	Protein-, (Poly)peptide-, and Amino Acid-Based Nanostructures Prepared via Polymerization-Induced Self-Assembly. Polymers, 2021, 13, 2603.	4.5	13
24	Marcromolecular Architecture and Encapsulation of the Anticancer Drug Everolimus Control the Self-Assembly of Amphiphilic Polypeptide-Containing Hybrids. Biomacromolecules, 2019, 20, 4546-4562.	5.4	9
25	Polymerization-induced self-assembly and disassembly during the synthesis of thermoresponsive ABC triblock copolymer nano-objects in aqueous solution. Chemical Science, 2022, 13, 7295-7303.	7.4	7
26	Tuning the Cloud-Point and Flocculation Temperature of Poly(2-(diethylamino)ethyl) Tj ETQq0 0 0 rgBT /Overlock 2021, 1, 47-58.	10 Tf 50 4 4.1	467 Td (meth 6
27	Stimuli-responsive and core cross-linked micelles developed by NiCCo-PISA of helical poly(aryl) Tj ETQq1 1 0.7843	14.ggBT /0	Dverlock 10