Fei He

List of Publications by Citations

Source: https://exaly.com/author-pdf/439298/fei-he-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 225
 10,477
 59
 89

 papers
 citations
 h-index
 g-index

 242
 12,880
 9.1
 6.62

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
225	Recent advances in functional nanomaterials for light E riggered cancer therapy. <i>Nano Today</i> , 2018 , 19, 146-187	17.9	325
224	A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. <i>ACS Nano</i> , 2015 , 9, 1630-47	16.7	295
223	Highly Emissive Dye-Sensitized Upconversion Nanostructure for Dual-Photosensitizer Photodynamic Therapy and Bioimaging. <i>ACS Nano</i> , 2017 , 11, 4133-4144	16.7	262
222	Magnetic Targeting, Tumor Microenvironment-Responsive Intelligent Nanocatalysts for Enhanced Tumor Ablation. <i>ACS Nano</i> , 2018 , 12, 11000-11012	16.7	247
221	A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: fabrication and high supercapacitor performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1022-1031	13	212
220	Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1700371	15.6	211
219	Poly(Acrylic Acid) Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery. <i>Advanced Functional Materials</i> , 2015 , 25, 4717	-4729	196
218	Tumor Microenvironment-Responsive Mesoporous MnO2-Coated Upconversion Nanoplatform for Self-Enhanced Tumor Theranostics. <i>Advanced Functional Materials</i> , 2018 , 28, 1803804	15.6	182
217	An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release. <i>Biomaterials</i> , 2015 , 63, 115-27	15.6	175
216	Integration of Upconversion Nanoparticles and Ultrathin Black Phosphorus for Efficient Photodynamic Theranostics under 808 nm Near-Infrared Light Irradiation. <i>Chemistry of Materials</i> , 2016 , 28, 4724-4734	9.6	174
215	Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. <i>Coordination Chemistry Reviews</i> , 2019 , 381, 104-134	23.2	165
214	A New Single 808 nm NIR Light-Induced Imaging-Guided Multifunctional Cancer Therapy Platform. <i>Advanced Functional Materials</i> , 2015 , 25, 3966-3976	15.6	163
213	Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10889		151
212	GSH-Depleted Nanozymes with Hyperthermia-Enhanced Dual Enzyme-Mimic Activities for Tumor Nanocatalytic Therapy. <i>Advanced Materials</i> , 2020 , 32, e2002439	24	135
211	g-C3N4 Coated Upconversion Nanoparticles for 808 nm Near-Infrared Light Triggered Phototherapy and Multiple Imaging. <i>Chemistry of Materials</i> , 2016 , 28, 7935-7946	9.6	135
210	Upconversion-mediated ZnFeO nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy. <i>Chemical Science</i> , 2019 , 10, 4259-4271	9.4	116
209	A Single 808 nm Near-Infrared Light-Mediated Multiple Imaging and Photodynamic Therapy Based on Titania Coupled Upconversion Nanoparticles. <i>Chemistry of Materials</i> , 2015 , 27, 7957-7968	9.6	114

208	Reduced graphene oxide/Ni(1-x)Co(x)Al-layered double hydroxide composites: preparation and high supercapacitor performance. <i>Dalton Transactions</i> , 2014 , 43, 11667-75	4.3	106
207	Emerging graphitic carbon nitride-based materials for biomedical applications. <i>Progress in Materials Science</i> , 2020 , 112, 100666	42.2	104
206	Multifunctional Anticancer Platform for Multimodal Imaging and Visible Light Driven Photodynamic/Photothermal Therapy. <i>Chemistry of Materials</i> , 2015 , 27, 1751-1763	9.6	104
205	All-in-One Theranostic Nanomedicine with Ultrabright Second Near-Infrared Emission for Tumor-Modulated Bioimaging and Chemodynamic/Photodynamic Therapy. <i>ACS Nano</i> , 2020 , 14, 9613-9	6 2 5 ^{.7}	97
204	Hollow Structured Y2O3:Yb/Er©uxS Nanospheres with Controllable Size for Simultaneous Chemo/Photothermal Therapy and Bioimaging. <i>Chemistry of Materials</i> , 2015 , 27, 483-496	9.6	95
203	Integration of IR-808 Sensitized Upconversion Nanostructure and MoS Nanosheet for 808 nm NIR Light Triggered Phototherapy and Bioimaging. <i>Small</i> , 2017 , 13, 1701841	11	93
202	Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. <i>Biomaterials</i> , 2019 , 223, 119473	15.6	90
201	Au25 cluster functionalized metal-organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. <i>Nanoscale</i> , 2015 , 7, 19568-78	7.7	89
200	Rapid microwave reflux process for the synthesis of pure hexagonal NaYF4:Yb3+,Ln3+,Bi3+ (Ln3+ = Er3+, Tm3+, Ho3+) and its enhanced UC luminescence. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21613		88
199	Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties. <i>CrystEngComm</i> , 2011 , 13, 5480	3.3	88
198	In situ assembly of well-dispersed Ni nanoparticles on silica nanotubes and excellent catalytic activity in 4-nitrophenol reduction. <i>Nanoscale</i> , 2014 , 6, 11181-8	7.7	84
197	Yolk-Structured Upconversion Nanoparticles with Biodegradable Silica Shell for FRET Sensing of Drug Release and Imaging-Guided Chemotherapy. <i>Chemistry of Materials</i> , 2017 , 29, 7615-7628	9.6	80
196	Fusiform-Like Copper(II)-Based Metal-Organic Framework through Relief Hypoxia and GSH-Depletion Co-Enhanced Starvation and Chemodynamic Synergetic Cancer Therapy. <i>ACS Applied Materials & Date:</i> 12, 17254-17267	9.5	79
195	Glutathione Mediated Size-Tunable UCNPs-Pt(IV)-ZnFe O Nanocomposite for Multiple Bioimaging Guided Synergetic Therapy. <i>Small</i> , 2018 , 14, e1703809	11	79
194	Ultra small and highly dispersed Fe3O4 nanoparticles anchored on reduced graphene for supercapacitor application. <i>Electrochimica Acta</i> , 2016 , 190, 566-573	6.7	79
193	Hollow structured and flower-like C@MnCo2O4 composite for high electrochemical performance in a supercapacitor. <i>CrystEngComm</i> , 2014 , 16, 9873-9881	3.3	79
192	Fabrication and electrochemical performance of 3D hierarchical ENi(OH)2 hollow microspheres wrapped in reduced graphene oxide. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9083	13	78
191	Glutathione and H2O2 consumption promoted photodynamic and chemotherapy based on biodegradable MnO2Pt@Au25 nanosheets. <i>Chemical Engineering Journal</i> , 2019 , 356, 543-553	14.7	78

190	Hydrothermal synthesis and luminescent properties of YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) microspheres. <i>Journal of Colloid and Interface Science</i> , 2010 , 343, 71-8	9.3	77
189	Preparation and up-conversion luminescence of hollow La2O3:Ln (Ln = Yb/Er, Yb/Ho) microspheres. <i>Langmuir</i> , 2011 , 27, 5616-23	4	76
188	Tumour microenvironment responsive nanoconstructs for cancer theranostic. <i>Nano Today</i> , 2019 , 26, 16-56	17.9	73
187	A core/shell/satellite anticancer platform for 808 NIR light-driven multimodal imaging and combined chemo-/photothermal therapy. <i>Nanoscale</i> , 2015 , 7, 13747-58	7.7	73
186	Controllable Generation of Free Radicals from Multifunctional Heat-Responsive Nanoplatform for Targeted Cancer Therapy. <i>Chemistry of Materials</i> , 2018 , 30, 526-539	9.6	73
185	Uniform Ni/SiO2@Au magnetic hollow microspheres: rational design and excellent catalytic performance in 4-nitrophenol reduction. <i>Nanoscale</i> , 2014 , 6, 7025-32	7.7	73
184	Uniformly Dispersed ZnFeO Nanoparticles on Nitrogen-Modified Graphene for High-Performance Supercapacitor as Electrode. <i>Scientific Reports</i> , 2017 , 7, 43116	4.9	72
183	Hyperthermia and Controllable Free Radical Coenhanced Synergistic Therapy in Hypoxia Enabled by Near-Infrared-II Light Irradiation. <i>ACS Nano</i> , 2019 , 13, 13144-13160	16.7	72
182	Construction of Bi/phthalocyanine manganese nanocomposite for trimodal imaging directed photodynamic and photothermal therapy mediated by 808 nm light. <i>Biomaterials</i> , 2020 , 228, 119569	15.6	70
181	Self-Assembled Single-Site Nanozyme for Tumor-Specific Amplified Cascade Enzymatic Therapy. Angewandte Chemie - International Edition, 2021 , 60, 3001-3007	16.4	67
180	Charge convertibility and near infrared photon co-enhanced cisplatin chemotherapy based on upconversion nanoplatform. <i>Biomaterials</i> , 2017 , 130, 42-55	15.6	65
179	Nitrogen-enriched, double-shelled carbon/layered double hydroxide hollow microspheres for excellent electrochemical performance. <i>Nanoscale</i> , 2014 , 6, 10887-95	7.7	65
178	Monodisperse lanthanide fluoride nanocrystals: synthesis and luminescent properties. <i>Inorganic Chemistry</i> , 2012 , 51, 3963-71	5.1	65
177	Self-assembled zinc phthalocyanine nanoparticles as excellent photothermal/photodynamic synergistic agent for antitumor treatment. <i>Chemical Engineering Journal</i> , 2019 , 361, 117-128	14.7	65
176	An intelligent nanoplatform for simultaneously controlled chemo-, photothermal, and photodynamic therapies mediated by a single NIR light. <i>Chemical Engineering Journal</i> , 2019 , 362, 679-6	9 1 4.7	64
175	Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging. <i>Chemical Science</i> , 2019 , 10, 8618-8633	9.4	64
174	Honeycomb-Satellite Structured pH/HO-Responsive Degradable Nanoplatform for Efficient Photodynamic Therapy and Multimodal Imaging. <i>ACS Applied Materials & Description (Materials & Description)</i> 10, 3390)1 ⁹ 3 ⁵ 39	1263
173	Bioresponsive and near infrared photon co-enhanced cancer theranostic based on upconversion nanocapsules. <i>Chemical Science</i> , 2018 , 9, 3233-3247	9.4	62

(2017-2013)

172	Controlled synthesis and enhanced supercapacitor performance of uniform pompon-like ENi(OH)2 hollow microspheres. <i>Electrochimica Acta</i> , 2013 , 90, 673-681	6.7	62	
171	Rapid, morphologically controllable, large-scale synthesis of uniform Y(OH)3 and tunable luminescent properties of Y2O3:Yb3+/Ln3+ (Ln = Er, Tm and Ho). <i>Journal of Materials Chemistry</i> , 2012 , 22, 16136		60	
170	Multifunctional Bismuth Ferrite Nanocatalysts with Optical and Magnetic Functions for Ultrasound-Enhanced Tumor Theranostics. <i>ACS Nano</i> , 2020 , 14, 7245-7258	16.7	59	
169	Influence of surfactants on the morphology, upconversion emission, and magnetic properties of ENaGdF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho). <i>Dalton Transactions</i> , 2013 , 42, 10019-28	4.3	59	
168	Solvothermal synthesis of SrMoO4:Ln (Ln=Eu3+, Tb3+, Dy3+) nanoparticles and its photoluminescence properties at room temperature. <i>Materials Research Bulletin</i> , 2011 , 46, 333-339	5.1	59	
167	An Ultrasmall SnFe2O4 Nanozyme with Endogenous Oxygen Generation and Glutathione Depletion for Synergistic Cancer Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2006216	15.6	59	
166	Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 3250-62	9.5	58	
165	Self-assembled ENaGdF4 microcrystals: hydrothermal synthesis, morphology evolution, and luminescence properties. <i>Inorganic Chemistry</i> , 2011 , 50, 4116-24	5.1	58	
164	Upconversion processes: versatile biological applications and biosafety. <i>Nanoscale</i> , 2017 , 9, 12248-122	8 2 7.7	57	
163	A novel 3D structured reduced graphene oxide/TiO2 composite: synthesis and photocatalytic performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3605-3612	13	57	
162	Preparation of Carbon Dots for Cellular Imaging by the Molecular Aggregation of Cellulolytic Enzyme Lignin. <i>Langmuir</i> , 2017 , 33, 5786-5795	4	56	
161	Facile fabrication and electrochemical performance of flower-like Fe3O4@C@layered double hydroxide (LDH) composite. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8758-8765	13	56	
160	Hydrothermal synthesis, dimension evolution and luminescence properties of tetragonal LaVO4:Ln (Ln = Eu3+, Dy3+, Sm3+) nanocrystals. <i>Dalton Transactions</i> , 2011 , 40, 11023-30	4.3	56	
159	A Versatile Near Infrared Light Triggered Dual-Photosensitizer for Synchronous Bioimaging and Photodynamic Therapy. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 12993-13008	9.5	55	
158	Combination of CuS and g-C3N4 QDs on upconversion nanoparticles for targeted photothermal and photodynamic cancer therapy. <i>Chemical Engineering Journal</i> , 2019 , 360, 866-878	14.7	55	
157	O-Generating Metal-Organic Framework-Based Hydrophobic Photosensitizer Delivery System for Enhanced Photodynamic Therapy. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 36347-36358	9.5	54	
156	MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors. <i>Chemistry - A European Journal</i> , 2015 , 21, 7119-26	4.8	54	
155	Boosting Gas Involved Reactions at Nanochannel Reactor with Joint Gas-Solid-Liquid Interfaces and Controlled Wettability. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10441-10446	16.4	54	

154	Enhanced up/down-conversion luminescence and heat: Simultaneously achieving in one single core-shell structure for multimodal imaging guided therapy. <i>Biomaterials</i> , 2016 , 105, 77-88	15.6	54
153	Multifunctional Theranostics for Dual-Modal Photodynamic Synergistic Therapy via Stepwise Water Splitting. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	53
152	Controllable synthesis of Ni/SiOIhollow spheres and their excellent catalytic performance in 4-nitrophenol reduction. <i>Dalton Transactions</i> , 2014 , 43, 16911-8	4.3	53
151	Y2O3:Yb,Er@mSiO2-Cu(x)S double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging. <i>Nanoscale</i> , 2015 , 7, 12180-91	7.7	52
150	Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. <i>Dalton Transactions</i> , 2018 , 47, 3931-3939	4.3	52
149	Highly uniform hollow GdF3 spheres: controllable synthesis, tuned luminescence, and drug-release properties. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10806-18	9.5	52
148	808 nm near-infrared light controlled dual-drug release and cancer therapy in vivo by upconversion mesoporous silica nanostructures. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 2086-2095	7.3	48
147	Multifunctional UCNPs@MnSiO@g-CN nanoplatform: improved ROS generation and reduced glutathione levels for highly efficient photodynamic therapy. <i>Biomaterials Science</i> , 2017 , 5, 2456-2467	7.4	48
146	Bismuth Nanoparticles with <code>LightlP</code> roperty Served as a Multifunctional Probe for X-ray Computed Tomography and Fluorescence Imaging. <i>Chemistry of Materials</i> , 2018 , 30, 3301-3307	9.6	48
145	A Novel double-shelled C@NiO hollow microsphere: Synthesis and application for electrochemical capacitor. <i>Electrochimica Acta</i> , 2014 , 148, 211-219	6.7	48
144	Controlling Selective Doping and Energy Transfer between Transition Metal and Rare Earth Ions in Nanostructured Glassy Solids. <i>Advanced Optical Materials</i> , 2018 , 6, 1701407	8.1	47
143	Fe3O4@MIL-100(Fe)-UCNPs heterojunction photosensitizer: Rational design and application in near infrared light mediated hypoxic tumor therapy. <i>Chemical Engineering Journal</i> , 2018 , 354, 1141-115	2 ^{14.7}	47
142	Au Nanoclusters Sensitized Black TiO Nanotubes for Enhanced Photodynamic Therapy Driven by Near-Infrared Light. <i>Small</i> , 2017 , 13, 1703007	11	46
141	Magnetically targeted delivery of DOX loaded Cu9S5@mSiO2@Fe3O4-PEG nanocomposites for combined MR imaging and chemo/photothermal synergistic therapy. <i>Nanoscale</i> , 2016 , 8, 12560-9	7.7	46
140	Ni(OH) nanosheets grown on porous hybrid g-CN/RGO network as high performance supercapacitor electrode. <i>Scientific Reports</i> , 2017 , 7, 43413	4.9	44
139	Linkage Engineering by Harnessing Supramolecular Interactions to Fabricate 2D Hydrazone-Linked Covalent Organic Framework Platforms toward Advanced Catalysis. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18138-18149	16.4	44
138	NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 8000-8008	7-3	43
137	Facile synthesis and up-conversion properties of monodisperse rare earth fluoride nanocrystals. Dalton Transactions, 2012, 41, 11716-24	4.3	43

136	Recent Advances in Covalent Organic Framework-Based Nanosystems for Bioimaging and Therapeutic Applications 2020 , 2, 1074-1092		42
135	Multifunctional mesoporous ZrO encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy. <i>Biomaterials</i> , 2017 , 147, 39-52	15.6	41
134	Imaging-Guided and Light-Triggered Chemo-/Photodynamic/Photothermal Therapy Based on Gd (III) Chelated Mesoporous Silica Hybrid Spheres. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 2058	<i>-</i> 2⁄ð71	41
133	Intelligent Fe-Mn Layered Double Hydroxides Nanosheets Anchored with Upconversion Nanoparticles for Oxygen-Elevated Synergetic Therapy and Bioimaging. <i>Small</i> , 2020 , 16, e2001343	11	40
132	A Core-Shell-Satellite Structured Fe O @g-C N -UCNPs-PEG for T /T -Weighted Dual-Modal MRI-Guided Photodynamic Therapy. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700502	10.1	39
131	Carbon-Dot-Decorated TiO Nanotubes toward Photodynamic Therapy Based on Water-Splitting Mechanism. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800042	10.1	39
130	Synthesis of NaYF4 microcrystals with different morphologies and enhanced up-conversion luminescence properties. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 16795-805	3.6	39
129	Core-shell structured GdO:Ln@mSiO hollow nanospheres: synthesis, photoluminescence and drug release properties. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 2127-2135	7.3	38
128	Lutecium fluoride hollow mesoporous spheres with enhanced up-conversion luminescent bioimaging and light-triggered drug release by gold nanocrystals. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 15550-63	9.5	38
127	Fabrication and luminescent properties of CaWO4:Ln3+ (Ln = Eu, Sm, Dy) nanocrystals. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 2295-2305	2.3	38
126	Metal-organic frameworks join hands to create an anti-cancer nanoplatform based on 808 nm light driving up-conversion nanoparticles. <i>Chemical Engineering Journal</i> , 2018 , 344, 363-374	14.7	37
125	Multifunctional SiO2@Gd2O3:Yb/Tm hollow capsules: controllable synthesis and drug release properties. <i>Inorganic Chemistry</i> , 2014 , 53, 10917-27	5.1	37
124	Controlled synthesis of luminescent F-substituted strontium hydroxyapatite with hierarchical structures for drug delivery. <i>CrystEngComm</i> , 2012 , 14, 1744	3.3	37
123	Uniform fibrous-structured hollow mesoporous carbon spheres for high-performance supercapacitor electrodes. <i>Electrochimica Acta</i> , 2015 , 176, 542-547	6.7	36
122	Hollow structured SrMoO:Yb, Ln (Ln = Tm, Ho, Tm/Ho) microspheres: tunable up-conversion emissions and application as drug carriers. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2056-2065	7.3	36
121	Optimization of upconversion luminescence of Nd(3+)-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery. <i>Dalton Transactions</i> , 2016 , 45, 1708-16	4.3	35
120	Hierarchical porous CNTs@NCS@MnO2 composites: rational design and high asymmetric supercapacitor performance. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15642-15649	13	34
119	A novel core-shell structured upconversion nanorod as a multimodal bioimaging and photothermal ablation agent for cancer theranostics. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 2597-2607	7.3	34

118	Doxorubicin-conjugated CuS nanoparticles for efficient synergistic therapy triggered by near-infrared light. <i>Dalton Transactions</i> , 2016 , 45, 5101-10	4.3	34
117	Single bismuth tungstate nanosheets for simultaneous chemo-, photothermal, and photodynamic therapies mediated by near-infrared light. <i>Chemical Engineering Journal</i> , 2018 , 351, 1147-1158	14.7	34
116	Surfactant-free synthesis, luminescent properties, and drug-release properties of LaF3 and LaCO3F hollow microspheres. <i>Inorganic Chemistry</i> , 2014 , 53, 998-1008	5.1	33
115	Bioapplications of graphene constructed functional nanomaterials. <i>Chemico-Biological Interactions</i> , 2017 , 262, 69-89	5	33
114	Upconverted Metal-Organic Framework Janus Architecture for Near-Infrared and Ultrasound Co-Enhanced High Performance Tumor Therapy. <i>ACS Nano</i> , 2021 ,	16.7	33
113	NIR-driven water splitting by layered bismuth oxyhalide sheets for effective photodynamic therapy. Journal of Materials Chemistry B, 2017 , 5, 4152-4161	7.3	32
112	Gadolinium fluoride mesoporous microspheres: controllable synthesis, materials and biological properties. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 1791-1801	7.3	31
111	Biomimetic Bone-like Hydroxyapatite by Mineralization on Supramolecular Porous Fiber Networks. <i>Langmuir</i> , 2017 , 33, 8493-8502	4	31
110	LaPO4:Eu3+, LaPO4:Ce3+, and LaPO4:Ce3+,Tb3+ nanocrystals: Oleic acid assisted solvothermal synthesis, characterization, and luminescent properties. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 3096-3102	5.7	31
109	Design, fabrication, luminescence and biomedical applications of UCNPs@mSiO-ZnPc-CDs-P(NIPAm-MAA) nanocomposites. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 58	8 3 -389	4 ³⁰
108	Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic-Synergized Multimodal Therapy. <i>Advanced Materials</i> , 2021 , 33, e2104223	24	30
107	Controllable synthesis and up-conversion properties of tetragonal BaYF5:Yb/Ln (Ln=Er, Tm, and Ho) nanocrystals. <i>Journal of Colloid and Interface Science</i> , 2011 , 362, 389-96	9.3	29
106	Quad-Model Imaging-Guided High-Efficiency Phototherapy Based on Upconversion Nanoparticles and ZnFeO Integrated Graphene Oxide. <i>Inorganic Chemistry</i> , 2018 , 57, 9988-9998	5.1	28
105	Targeted and imaging-guided chemo-photothermal ablation achieved by combining upconversion nanoparticles and protein-capped gold nanodots. <i>Chemical Engineering Journal</i> , 2019 , 370, 1239-1250	14.7	27
104	Redox-responsive UCNPs-DPA conjugated NGO-PEG-BPEI-DOX for imaging-guided PTT and chemotherapy for cancer treatment. <i>Dalton Transactions</i> , 2018 , 47, 3921-3930	4.3	27
103	Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. <i>Coordination Chemistry Reviews</i> , 2021 , 439, 213945	23.2	27
102	CuS-Pt(iv)-PEG-FA nanoparticles for targeted photothermal and chemotherapy. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 5938-5946	7.3	27
101	A novel P-N heterojunction with staggered energy level based on ZnFe2O4 decorating SnS2 nanosheet for efficient photocatalytic degradation. <i>Applied Surface Science</i> , 2020 , 510, 145442	6.7	26

100	Multifunctional Theranostic Nanoplatform Based on Fe-mTaO@CuS-ZnPc/PCM for Bimodal Imaging and Synergistically Enhanced Phototherapy. <i>Inorganic Chemistry</i> , 2018 , 57, 4864-4876	5.1	26	
99	Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation. <i>Nanoscale</i> , 2013 , 5, 8507-16	7:7	26	
98	Lanthanide-doped bismuth oxobromide nanosheets for self-activated photodynamic therapy. Journal of Materials Chemistry B, 2017 , 5, 7939-7948	7:3	26	
97	An all-in-one theranostic nanoplatform based on upconversion dendritic mesoporous silica nanocomposites for synergistic chemodynamic/photodynamic/gas therapy. <i>Nanoscale</i> , 2020 , 12, 2414	6-2 <u>4</u> 7161	l ²⁵	
96	Renal-Clearable Nickel-Doped Carbon Dots with Boosted Photothermal Conversion Efficiency for Multimodal Imaging-Guided Cancer Therapy in the Second Near-Infrared Biowindow. <i>Advanced Functional Materials</i> , 2021 , 31, 2100549	15.6	25	
95	An intelligent nanoplatform for imaging-guided photodynamic/photothermal/chemo-therapy based on upconversion nanoparticles and CuS integrated black phosphorus. <i>Chemical Engineering Journal</i> , 2020 , 382, 122822	14.7	25	
94	Morphology-controllable synthesis and enhanced luminescence properties of ENaLuF4:Ln (Ln = Eu, Tb and Ce/Tb) microcrystals by solvothermal process. <i>RSC Advances</i> , 2012 , 2, 7569	3.7	24	
93	A smart tumor microenvironment responsive nanoplatform based on upconversion nanoparticles for efficient multimodal imaging guided therapy. <i>Biomaterials Science</i> , 2019 , 7, 951-962	7.4	23	
92	Polyaniline electrospinning composite fibers for orthotopic photothermal treatment of tumors in vivo. <i>New Journal of Chemistry</i> , 2015 , 39, 4987-4993	3.6	23	
91	Polypyrrole-coated UCNPs@mSiO@ZnO nanocomposite for combined photodynamic and photothermal therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 8148-8162	7:3	23	
90	Self-generation of oxygen and simultaneously enhancing photodynamic therapy and MRI effect: An intelligent nanoplatform to conquer tumor hypoxia for enhanced phototherapy. <i>Chemical Engineering Journal</i> , 2020 , 390, 124624	14.7	22	
89	Color-tunable and enhanced luminescence of well-defined sodium scandium fluoride nanocrystals. <i>Dalton Transactions</i> , 2013 , 42, 7863-70	4.3	22	
88	Fabrication of luminescent and mesoporous core\(\frac{1}{2}\) hell structured nanocomposites and their application as drug carrier. Microporous and Mesoporous Materials, 2010, 131, 128-135	5.3	22	
87	Pt Decorated TiCT MXene with NIR-II Light Amplified Nanozyme Catalytic Activity for Efficient Phototheranostics <i>ACS Nano</i> , 2022 ,	16.7	22	
86	Carbon dioxide utilization: A paradigm shift with CO2 economy. <i>Chemical Engineering Journal Advances</i> , 2020 , 3, 100013	3.6	22	
85	X-ray-triggered NO-released Bi-SNO nanoparticles: all-in-one nano-radiosensitizer with photothermal/gas therapy for enhanced radiotherapy. <i>Nanoscale</i> , 2020 , 12, 19293-19307	7:7	22	
84	A Tumor-Microenvironment-Responsive Nanocomposite for Hydrogen Sulfide Gas and Trimodal-Enhanced Enzyme Dynamic Therapy. <i>Advanced Materials</i> , 2021 , 33, e2101223	24	22	
83	Tumor self-responsive upconversion nanomedicines for theranostic applications. <i>Nanoscale</i> , 2019 , 11, 17535-17556	7.7	21	

82	Markedly enhanced up-conversion luminescence by combining IR-808 dye sensitization and core-shell-shell structures. <i>Dalton Transactions</i> , 2017 , 46, 1495-1501	4.3	20
81	Degradable Calcium Phosphate-Coated Upconversion Nanoparticles for Highly Efficient Chemo-Photodynamic Therapy. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 47659-47670	9.5	20
80	LaF3:Ln mesoporous spheres: controllable synthesis, tunable luminescence and application for dual-modal chemo-/photo-thermal therapy. <i>Nanoscale</i> , 2014 , 6, 14799-809	7.7	20
79	Multimode Imaging-Guided Photothermal/Chemodynamic Synergistic Therapy Nanoagent with a Tumor Microenvironment Responded Effect. <i>ACS Applied Materials & Discounty (Naterials & Discou</i>	2491	20
78	Construction of thiol-capped ultrasmall Au-Bi bimetallic nanoparticles for X-ray CT imaging and enhanced antitumor therapy efficiency. <i>Biomaterials</i> , 2021 , 264, 120453	15.6	20
77	A cheap and efficient catalyst with ultra-high activity for reduction of 4-nitrophenol. <i>CrystEngComm</i> , 2015 , 17, 5744-5750	3.3	19
76	Self-healing system adapted to different pH environments for active corrosion protection of magnesium alloy. <i>Journal of Alloys and Compounds</i> , 2020 , 824, 153918	5.7	19
75	A novel strategy for markedly enhancing the red upconversion emission in Er3+/Tm3+ cooperated nanoparticles. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7533-7540	7.1	19
74	Guiding Transition Metal-Doped Hollow Cerium Tandem Nanozymes with Elaborately Regulated Multi-Enzymatic Activities for Intensive Chemodynamic Therapy. <i>Advanced Materials</i> , 2021 , e2107054	24	19
73	An 808 nm Light-Sensitized Upconversion Nanoplatform for Multimodal Imaging and Efficient Cancer Therapy. <i>Inorganic Chemistry</i> , 2020 , 59, 4909-4923	5.1	18
72	Carbon microspheres work as an electron bridge for degrading high concentration MB in CoFe2O4@carbon microsphere/g-C3N4 with a hierarchical sandwich-structure. <i>Applied Surface Science</i> , 2020 , 507, 145167	6.7	18
71	Sequential Catalytic, Magnetic Targeting Nanoplatform for Synergistic Photothermal and NIR-Enhanced Chemodynamic Therapy. <i>Chemistry of Materials</i> , 2020 , 32, 9868-9881	9.6	18
70	Fine-Tuning Ho-Based Red-Upconversion Luminescence by Altering NaHoF4 Core Size and NaYbF4 Shell Thickness. <i>Chemistry of Materials</i> , 2019 , 31, 7898-7909	9.6	17
69	Luminescence functionalization of MCM-48 by YVO4:Eu3+ for controlled drug delivery. <i>RSC Advances</i> , 2012 , 2, 3281	3.7	17
68	One-Step Integration of Tumor Microenvironment-Responsive Calcium and Copper Peroxides Nanocomposite for Enhanced Chemodynamic/Ion-Interference Therapy ACS Nano, 2021,	16.7	17
67	Bioresponsive upconversion nanostructure for combinatorial bioimaging and chemo-photothermal synergistic therapy. <i>Chemical Engineering Journal</i> , 2018 , 342, 446-457	14.7	16
66	Hierarchical bundles structure of ENaLuF4: facile synthesis, shape evolution, and luminescent properties. <i>RSC Advances</i> , 2012 , 2, 10337	3.7	16
65	Bane to boon: intrinsic defect sensitized photoluminescence from Mn2+ or rare-earth ion doped fluorosilicate photonic glasses. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 11806-11814	7.1	15

64	A [closed-Loop[Therapeutic Strategy Based on Mutually Reinforced Ferroptosis and Immunotherapy. <i>Advanced Functional Materials</i> ,2111784	15.6	15
63	Multimodal imaging and photothermal therapy were simultaneously achieved in the core-shell UCNR structure by using single near-infrared light. <i>Dalton Transactions</i> , 2017 , 46, 12147-12157	4.3	14
62	Efficient green upconversion luminescence in highly crystallized ultratransparent nano-glass ceramics containing isotropic KYF nanocrystals. <i>Optics Letters</i> , 2019 , 44, 4674-4677	3	14
61	Highly Erbium-Doped Nanoplatform with Enhanced Red Emission for Dual-Modal Optical-Imaging-Guided Photodynamic Therapy. <i>Inorganic Chemistry</i> , 2018 , 57, 14594-14602	5.1	14
60	Dual-functional graphene oxide-based nanomaterial for enhancing the passive and active corrosion protection of epoxy coating. <i>Composites Part B: Engineering</i> , 2021 , 222, 109075	10	14
59	Surface Charge Convertible and Biodegradable Synthetic Zwitterionic Nanoparticles for Enhancing Cellular Drug Uptake. <i>Macromolecular Bioscience</i> , 2016 , 16, 308-13	5.5	13
58	Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. <i>Coordination Chemistry Reviews</i> , 2022 , 451, 214267	23.2	13
57	Rapid Decomposition and Catalytic Cascade Nanoplatforms Based on Enzymes and Mn-Etched Dendritic Mesoporous Silicon for MRI-Guided Synergistic Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 45772-45788	9.5	13
56	UCNPs@gelatin-ZnPc nanocomposite: synthesis, imaging and anticancer properties. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 4138-4146	7.3	13
55	Self-produced bubble-template synthesis of La2O3:Yb/Er@Au hollow spheres with markedly enhanced luminescence and release properties. <i>CrystEngComm</i> , 2014 , 16, 9612-9621	3.3	12
54	Near-Infrared Upconversion Mesoporous Tin Oxide Bio-Photocatalyst for HO-Activatable O-Generating Magnetic Targeting Synergetic Treatment. <i>ACS Applied Materials & Description</i> (2020, 12, 41047-41061)	9.5	12
53	GPC3-targeted and curcumin-loaded phospholipid microbubbles for sono-photodynamic therapy in liver cancer cells. <i>Colloids and Surfaces B: Biointerfaces</i> , 2021 , 197, 111358	6	12
52	Self-Assembled Single-Site Nanozyme for Tumor-Specific Amplified Cascade Enzymatic Therapy. <i>Angewandte Chemie</i> , 2021 , 133, 3038-3044	3.6	12
51	Stimuli-responsive nanocomposites for magnetic targeting synergistic multimodal therapy and T/T-weighted dual-mode imaging. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2017 , 13, 875-	883	11
50	AgBiS-TPP nanocomposite for mitochondrial targeting photodynamic therapy, photothermal therapy and bio-imaging under 808 nm NIR laser irradiation. <i>Biomaterials Science</i> , 2019 , 7, 4769-4781	7.4	11
49	Fabricating sub-100nm conducting polymer nanowires by edge nanoimprint lithography. <i>Journal of Colloid and Interface Science</i> , 2015 , 458, 300-4	9.3	11
48	Multifunctional LaPO4:Ce/Tb@Au mesoporous microspheres: synthesis, luminescence and controllable light triggered drug release. <i>RSC Advances</i> , 2014 , 4, 63425-63435	3.7	11
47	Integrating Evolutionary Computation with Abstraction Refinement for Model Checking. <i>IEEE Transactions on Computers</i> , 2010 , 59, 116-126	2.5	11

46	Microwave Dielectric Properties and Reduction Behavior of Low-Grade Pyrolusite. <i>Jom</i> , 2019 , 71, 3909-	3 <u>9</u> .14	10
45	Research progress in endogenous H2S-activatable nanoplatforms for cancer theranostics. <i>View</i> , 2020 , 1, e15	7.8	10
44	Chiral N,N'-dioxide-iron(iii)-catalyzed asymmetric sulfoxidation with hydrogen peroxide. <i>Chemical Communications</i> , 2020 , 56, 3233-3236	5.8	10
43	Mesoporous core-shell TiO(2) walnuts for photocatalysts and photodetectors with improved performances. <i>Dalton Transactions</i> , 2014 , 43, 7599-607	4.3	10
42	Insight into the Luminescence Alternation of Sub-30 nm Upconversion Nanoparticles with a Small NaHoF Core and Multi-Gd /Yb Coexisting Shells. <i>Small</i> , 2020 , 16, e2003799	11	10
41	The cutting-edge phosphorus-rich metal phosphides for energy storage and conversion. <i>Nano Today</i> , 2021 , 40, 101245	17.9	10
40	Synthesis of FeOCl in Hollow Dendritic Mesoporous Organosilicon for Ascorbic Acid-Enhanced and MR Imaging-Guided Chemodynamic Therapy in Neutral pH Conditions. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 56886-56897	9.5	9
39	Transmission electron microscopic and optical spectroscopic studies of Ni2+/Yb3+/Er3+/Tm3+ doped dual-phase glass-ceramics. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 2868-2876	3.8	9
38	A cheap and facile route to synthesize monodisperse magnetic nanocrystals and their application as MRI agents. <i>Dalton Transactions</i> , 2015 , 44, 247-53	4.3	9
37	Ultrabright single-band red upconversion luminescence in highly transparent fluorosilicate glass ceramics containing KMnF perovskite nanocrystals. <i>Optics Letters</i> , 2019 , 44, 2959-2961	3	9
36	Drug release behavior of poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA) prepared by direct polycondensation. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2015 , 26, 1152-62	2 ^{3.5}	8
35	Controlled synthesis and luminescent properties of uniform SrMoO4 hollow microstructures and application as drug carrier. <i>RSC Advances</i> , 2013 , 3, 5945	3.7	8
34	A porous material excited by near-infrared light for photo/chemodynamic and photothermal dual-mode combination therapy. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 10559-10576	7.3	8
33	Ball-milling fabrication of BiAgOS nanoparticles for 808 nm light mediated photodynamic/photothermal treatment. <i>Chemical Engineering Journal</i> , 2021 , 411, 128568	14.7	8
32	A smart nanoplatform for synergistic starvation, hypoxia-active prodrug treatment and photothermal therapy mediated by near-infrared-II light. <i>Chemical Engineering Journal</i> , 2021 , 405, 1270	2 1 4·7	8
31	Calcium Peroxide-Based Nanosystem with Cancer Microenvironment-Activated Capabilities for Imaging Guided Combination Therapy Mitochondrial Ca Overload and Chemotherapy. <i>ACS Applied Materials & Discrete Amore Campilied Materials & Discrete Amore Capplied Materials amp; Interfaces</i> , 2021 , 13, 44096-44107	9.5	8
30	Synthesis and luminescence properties of NaGdF4: Yb3+, Ce3+, and Ho3+ upconversion nanoparticles doped with Zn2+. <i>CrystEngComm</i> , 2018 , 20, 2663-2668	3.3	7
29	Tuning upconversion luminescence of LiYF4:Yb3+,Er3+/Tm3+/Ho3+ microcrystals synthesized through a molten salt process. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 3509-14	1.3	7

28	808 nm Near-Infrared Light-Excited UCNPs@mSiO-Ce6-GPC3 Nanocomposites For Photodynamic Therapy In Liver Cancer. <i>International Journal of Nanomedicine</i> , 2019 , 14, 10009-10021	7.3	7
27	Layer structured LDH_ZnPcG4-FA nanoplatform for targeted and imaging guided chemo-photodynamic therapy mediated by 650 nm light. <i>Chemical Engineering Journal</i> , 2020 , 382, 1228	4 7 4.7	7
26	Integration of IR-808 and thiol-capped Au-Bi bimetallic nanoparticles for NIR light mediated photothermal/photodynamic therapy and imaging. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 101-111	7.3	7
25	Oxymatrine ameliorates agomelatine-induced hepatocyte injury through promoting proteasome-mediated CHOP degradation. <i>Biomedicine and Pharmacotherapy</i> , 2019 , 114, 108784	7.5	6
24	Switchable up-conversion luminescence bioimaging and targeted photothermal ablation in one core-shell-structured nanohybrid by alternating near-infrared light. <i>Dalton Transactions</i> , 2019 , 48, 5817-	- 5 830	6
23	Synthesis of magnetic and upconversion nanocapsules as multifunctional drug delivery system. Journal of Solid State Chemistry, 2015 , 229, 322-329	3.3	6
22	Effect and Mechanism of ShiZhiFang on Uric Acid Metabolism in Hyperuricemic Rats. <i>Evidence-based Complementary and Alternative Medicine</i> , 2018 , 2018, 6821387	2.3	6
21	Maxterm Covering for Satisfiability. <i>IEEE Transactions on Computers</i> , 2012 , 61, 420-426	2.5	6
20	Iridium-catalyzed cascade dehydrogenation, ring-closure reaction leading to 2,4,6-triaryl-1,3,5-triazines. <i>Russian Journal of General Chemistry</i> , 2016 , 86, 380-386	0.7	6
19	Mesoporous NaYF4:Yb,Er@AuPt(IV)-FA nanospheres for dual-modal imaging and synergistic photothermal/chemo-anti-cancer therapy. <i>RSC Advances</i> , 2015 , 5, 43391-43401	3.7	5
18	Synthesis, luminescence, and anti-tumor properties of MgSiO3:Eu-DOX-DPP-RGD hollow microspheres. <i>Dalton Transactions</i> , 2015 , 44, 18585-95	4.3	5
17	Solvothermal synthesis and upconversion properties of YF3:Ln (Ln = Yb/Er,Yb/Tm,Yb/Ho) nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 3503-8	1.3	5
16	Hydrogen Sulfide: An Emerging Precision Strategy for Gas Therapy. <i>Advanced Healthcare Materials</i> , 2021 , e2101984	10.1	5
15	In situ oxygenating and 808 nm light-sensitized nanocomposite for multimodal imaging and mitochondria-assisted cancer therapy. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 131-146	7.3	5
14	GRPr-mediated photothermal and thermodynamic dual-therapy for prostate cancer with synergistic anti-apoptosis mechanism. <i>Nanoscale</i> , 2021 , 13, 4249-4261	7.7	5
13	Europium Doped Silicon Quantum Dot As a Novel FRET Based Dual Detection Probe: Sensitive Detection of Tetracycline, Zinc, and Cadmium <i>Small Methods</i> , 2021 , 5, e2100812	12.8	5
12	A Si-CdTe Composite Quantum Dots Probe with Dual-Wavelength Emission for Sensitively Monitoring Intracellular H 2 O 2. <i>Advanced Functional Materials</i> ,2112083	15.6	4
11	Controllable drug release system based on phase change molecules as gatekeepers for bimodal tumor therapy with enhanced efficacy. <i>RSC Advances</i> , 2016 , 6, 65600-65606	3.7	3

10	Near-infrared light-induced imaging and targeted anti-cancer therapy based on a yolk/shell structure. <i>RSC Advances</i> , 2016 , 6, 21590-21599	3.7	3
9	Optimizing the SAT Decision Ordering of Bounded Model Checking by Structural Information 2013 ,		3
8	VeRV: A temporal and data-concerned verification framework for the vehicle bus systems 2015,		3
7	A novel Bff-on-off[fluorescent sensor based on inner filter effect for ultrasensitive detection of protamine/trypsin and subcellular colocalization. <i>Sensors and Actuators B: Chemical</i> , 2021 , 340, 129930	8.5	3
6	Kinetic Resolution of Propargylic Ethers via [2,3]-Wittig Rearrangement to Synthesize Chiral Hydroxyallenes. <i>Organic Letters</i> , 2020 , 22, 2692-2696	6.2	2
5	Engineering oxygen vacancy of MoO nanoenzyme by Mn doping for dual-route cascaded catalysis mediated high tumor eradication <i>Journal of Colloid and Interface Science</i> , 2022 , 623, 155-167	9.3	2
4	Mn 2+ /Fe 3+ /Co 2+ and Tetrasulfide Bond Co-Incorporated Dendritic Mesoporous Organosilica as Multifunctional Nanocarriers: One-Step Synthesis and Applications for Cancer Therapy. <i>Advanced Healthcare Materials</i> , 2200665	10.1	2
3	Near-Infrared Upconversion Mesoporous Tin Dioxide Theranostic Nanocapsules for Synergetic Cancer Chemophototherapy ACS Applied Materials & Interfaces, 2022,	9.5	1
2	Nontraditional Luminescent Molecular Aggregates Encapsulated by Wormlike Silica Nanoparticles for Latent Fingerprint Detection. <i>ACS Applied Materials & Detection (Materials & Detecti</i>	9.5	1
1	Siwu Granules and Erythropoietin Synergistically Ameliorated Anemia in Adenine-Induced Chronic Renal Failure Rats. Evidence-based Complementary and Alternative Medicine. 2019, 2019, 5832105	2.3	1