Diane M Mcknight

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4392891/diane-m-mcknight-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17,631 126 69 254 h-index g-index citations papers 6.45 267 19,713 5.3 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
254	Long-term ecological research and the COVID-19 anthropause: A window to understanding social-ecological disturbance <i>Ecosphere</i> , 2022 , 13, e4019	3.1	1
253	Blowin' in the wind: Dispersal, structure, and metacommunity dynamics of aeolian diatoms in the McMurdo Sound region, Antarctica. <i>Journal of Phycology</i> , 2021 ,	3	1
252	Effects of hydrologic variability and remedial actions on first flush and metal loading from streams draining the Silverton caldera, 1992\(\textbf{Q} 014. \) Hydrological Processes, 2021 , 35, e14412	3.3	O
251	Connectivity: insights from the U.S. Long Term Ecological Research Network. <i>Ecosphere</i> , 2021 , 12, e034	33.1	1
250	The Role of Hyporheic Connectivity in Determining Nitrogen Availability: Insights From an Intermittent Antarctic Stream. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2021JG00	o <i>€</i> 3709	1
249	Geochemistry of contrasting stream types, Taylor Valley, Antarctica. <i>Bulletin of the Geological Society of America</i> , 2021 , 133, 425-448	3.9	2
248	Diatoms in Hyporheic Sediments Trace Organic Matter Retention and Processing in the McMurdo Dry Valleys, Antarctica. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126,	3.7	1
247	Enhanced Rare Earth Element Mobilization in a Mountain Watershed of the Colorado Mineral Belt with Concomitant Detection in Aquatic Biota: Increasing Climate Change-Driven Degradation to Water Quality. <i>Environmental Science & Echnology</i> , 2021 , 55, 14378-14388	10.3	1
246	Supporting Simultaneous Air Revitalization and Thermal Control in a Crewed Habitat With Temperate and Eurythermic Antarctic Chlorophyta. <i>Frontiers in Microbiology</i> , 2021 , 12, 709746	5.7	O
245	Silicon Isotopes Reveal a Non-glacial Source of Silicon to Crescent Stream, McMurdo Dry Valleys, Antarctica. <i>Frontiers in Earth Science</i> , 2020 , 8,	3.5	5
244	Geochemistry of aeolian material from the McMurdo Dry Valleys, Antarctica: Insights into Southern Hemisphere dust sources. <i>Earth and Planetary Science Letters</i> , 2020 , 547, 116460	5.3	5
243	Experimental effects of elevated temperature and nitrogen deposition on high-elevation aquatic communities. <i>Aquatic Sciences</i> , 2020 , 82, 1	2.5	1
242	The life aquatic in high relief: shifts in the physical and biological characteristics of alpine lakes along an elevation gradient in the Rocky Mountains, USA. <i>Aquatic Sciences</i> , 2020 , 82, 1	2.5	3
241	Dynamic changes in dissolved organic matter composition in a Mountain Lake under ice cover and relationships to changes in nutrient cycling and phytoplankton community composition. <i>Aquatic Sciences</i> , 2020 , 82, 1	2.5	4
240	Biofuel Burning Influences Refractory Black Carbon Concentrations in Seasonal Snow at Lower Elevations of the Dudh Koshi River Basin of Nepal. <i>Frontiers in Earth Science</i> , 2020 , 8,	3.5	3
239	Silicon Isotopic Composition of Dry and Wet-Based Glaciers in Antarctica. <i>Frontiers in Earth Science</i> , 2020 , 8,	3.5	3
238	Evaluating Alternative Metacommunity Hypotheses for Diatoms in the McMurdo Dry Valleys Using Simulations and Remote Sensing Data. <i>Frontiers in Ecology and Evolution</i> , 2020 , 8,	3.7	1

(2018-2020)

237	Effects of Spatial Variability and Relic DNA Removal on the Detection of Temporal Dynamics in Soil Microbial Communities. <i>MBio</i> , 2020 , 11,	7.8	29
236	Diurnal chemistry of two contrasting stream types, Taylor Valley, McMurdo Dry Valley Region, Antarctica. <i>E3S Web of Conferences</i> , 2019 , 98, 01020	0.5	
235	Sabbea gen. nov., a new diatom genus (Bacillariophyta) from continental Antarctica. <i>Phytotaxa</i> , 2019 , 418, 42-56	0.7	3
234	Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters. <i>Journal of Environmental Quality</i> , 2019 , 48, 217-232	3.4	97
233	Using Humic Fractions to Understand Natural Organic Matter Processes in Soil and Water: Selected Studies and Applications. <i>Journal of Environmental Quality</i> , 2019 , 48, 1633-1643	3.4	34
232	The Hydroecology of an Ephemeral Wetland in the McMurdo Dry Valleys, Antarctica. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2019 , 124, 3814-3830	3.7	3
231	Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. <i>Global Change Biology</i> , 2018 , 24, 3692-3714	11.4	118
230	Near-Surface Refractory Black Carbon Observations in the Atmosphere and Snow in the McMurdo Dry Valleys, Antarctica, and Potential Impacts of Foehn Winds. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 2877-2887	4.4	16
229	Long-Term Experimental Acidification Drives Watershed Scale Shift in Dissolved Organic Matter Composition and Flux. <i>Environmental Science & Environmental & E</i>	10.3	13
228	A Tribute to George R. Aiken. <i>Environmental Science & Environmental &</i>	10.3	1
227	Dissolved fulvic acids from a high arsenic aquifer shuttle electrons to enhance microbial iron reduction. <i>Science of the Total Environment</i> , 2018 , 615, 1390-1395	10.2	49
226	Spatial and temporal patterns of microbial mats and associated invertebrates along an Antarctic stream. <i>Polar Biology</i> , 2018 , 41, 1911-1921	2	4
225	Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition. <i>PeerJ</i> , 2018 , 6, e4575	3.1	6
	High Pressure Size Exclusion Chromatography (HPSEC) Determination of Dissolved Organic Matter		
224	Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods. <i>Environmental Science & Environmental Science & Environ</i>	10.3	18
224	Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and	3.8	18
	Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods. <i>Environmental Science & Environmental Science & Environ</i>	3.8	
223	Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods. <i>Environmental Science & Environmental Science & Environ</i>	3.8	11

219	Hydrologic connectivity and implications for ecosystem processes - Lessons from naked watersheds. <i>Geomorphology</i> , 2017 , 277, 63-71	4.3	26
218	Impacts of coal dust from an active mine on the spectral reflectance of Arctic surface snow in Svalbard, Norway. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 1767-1778	4.4	18
217	DebatesHypothesis testing in hydrology: A view from the field: The value of hydrologic hypotheses in designing field studies and interpreting the results to advance hydrology. <i>Water Resources Research</i> , 2017 , 53, 1779-1783	5.4	7
216	Biogeophysical properties of an expansive Antarctic supraglacial stream. <i>Antarctic Science</i> , 2017 , 29, 33-44	1.7	5
215	Dissolved black carbon in the global cryosphere: Concentrations and chemical signatures. <i>Geophysical Research Letters</i> , 2017 , 44, 6226-6234	4.9	21
214	Microbial formation of labile organic carbon in Antarctic glacial environments. <i>Nature Geoscience</i> , 2017 , 10, 356-359	18.3	51
213	Freshwater diatom biogeography and the genus Luticola: an extreme case of endemism in Antarctica. <i>Polar Biology</i> , 2017 , 40, 1185-1196	2	24
212	Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. <i>Nature Ecology and Evolution</i> , 2017 , 1, 1334-1338	12.3	46
211	Concentration-discharge relationships during an extreme event: Contrasting behavior of solutes and changes to chemical quality of dissolved organic material in the Boulder Creek Watershed during the September 2013 flood. <i>Water Resources Research</i> , 2017 , 53, 5276-5297	5.4	15
210	Thermal autecology describes the occurrence patterns of four benthic diatoms in McMurdo Dry Valley streams. <i>Polar Biology</i> , 2017 , 40, 2381-2396	2	7
209	Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure. <i>Geophysical Research Letters</i> , 2016 , 43, 5353-5360	4.9	67
208	Dissolved black carbon in Antarctic lakes: Chemical signatures of past and present sources. <i>Geophysical Research Letters</i> , 2016 , 43, 5750-5757	4.9	19
207	Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds. <i>Water Resources Research</i> , 2016 , 52, 8202-8216	5.4	14
206	Patterns of hydrologic connectivity in the McMurdo Dry Valleys, Antarctica: a synthesis of 20 years of hydrologic data. <i>Hydrological Processes</i> , 2016 , 30, 2958-2975	3.3	24
205	Characterization of dissolved organic material in the interstitial brine of Lake Vida, Antarctica. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 183, 63-78	5.5	15
204	Stream biogeochemical and suspended sediment responses to permafrost degradation in stream banks in Taylor Valley, Antarctica. <i>Biogeosciences</i> , 2016 , 13, 1723-1732	4.6	12
203	Hydrological Controls on Ecosystem Dynamics in Lake Fryxell, Antarctica. <i>PLoS ONE</i> , 2016 , 11, e015903	83.7	1
202	Dissolved organic matter transport reflects hillslope to stream connectivity during snowmelt in a montane catchment. <i>Water Resources Research</i> , 2016 , 52, 4905-4923	5.4	27

201	Nutrient treatments alter microbial mat colonization in two glacial meltwater streams from the McMurdo Dry Valleys, Antarctica. <i>FEMS Microbiology Ecology</i> , 2016 , 92, fiw049	4.3	14
2 00	Evidence for dispersal and habitat controls on pond diatom communities from the McMurdo Sound Region of Antarctica. <i>Polar Biology</i> , 2016 , 39, 2441-2456	2	20
199	Patterns of bacterial biodiversity in the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. <i>FEMS Microbiology Ecology</i> , 2016 , 92,	4.3	25
198	A slide down a slippery slope lalpine ecosystem responses to nitrogen deposition. <i>Plant Ecology and Diversity</i> , 2015 , 8, 727-738	2.2	22
197	Dissolved Organic Matter Quality in a Shallow Aquifer of Bangladesh: Implications for Arsenic Mobility. <i>Environmental Science & Environmental Science</i>	10.3	110
196	The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2015 , 72, 1272-1285	2.4	162
195	Life in the Main Channel: Long-Term Hydrologic Control of Microbial Mat Abundance in McMurdo Dry Valley Streams, Antarctica. <i>Ecosystems</i> , 2015 , 18, 310-327	3.9	33
194	Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 13946-51	11.5	155
193	Antarctic streams as a potential source of iron for the Southern Ocean: Figure 1 <i>Geology</i> , 2015 , 43, 100	03 , -100	614
192	Recovery of Antarctic stream epilithon from simulated scouring events. <i>Antarctic Science</i> , 2015 , 27, 341	-354	8
191	Pressure-driven, shoreline currents in a perennially ice-covered, pro-glacial lake in Antarctica, identified from a LiCl tracer injected into a pro-glacial stream. <i>Hydrological Processes</i> , 2015 , 29, 2212-22	13 ³ 1 ³	3
190	Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams. <i>Water Resources Research</i> , 2015 , 51, 6725-6738	5.4	6
189	Photochemical and Microbial Processes Influencing Iron-Humic Interactions in Stream and Lake Sediments 2015 , 351-369		2
188	Limnology of the Green Lakes Valley: phytoplankton ecology and dissolved organic matter biogeochemistry at a long-term ecological research site. <i>Plant Ecology and Diversity</i> , 2015 , 8, 689-702	2.2	14
187	Children book series and associated curricula support elementary education and outreach in water resources. <i>Plant Ecology and Diversity</i> , 2015 , 8, 795-804	2.2	1
186	An overview of research from a high elevation landscape: the Niwot Ridge, Colorado Long Term Ecological Research programme. <i>Plant Ecology and Diversity</i> , 2015 , 8, 597-605	2.2	11
185	Influence of leaching solution and catchment location on the fluorescence of water-soluble organic matter. <i>Environmental Science & Environmental Scie</i>	10.3	30
184	From the litter layer to the saprolite: Chemical changes in water-soluble soil organic matter and their correlation to microbial community composition. <i>Soil Biology and Biochemistry</i> , 2014 , 68, 166-176	7.5	54

183	Diel flow pulses drive particulate organic matter transport from microbial mats in a glacial meltwater stream in the McMurdo Dry Valleys. <i>Water Resources Research</i> , 2014 , 50, 86-97	5.4	27
182	Fractionation of fulvic acid by iron and aluminum oxidesinfluence on copper toxicity to Ceriodaphnia dubia. <i>Environmental Science & Environmental S</i>	10.3	10
181	Abiotic and biotic factors influencing the mobility of arsenic in groundwater of a through-flow island in the Okavango Delta, Botswana. <i>Journal of Hydrology</i> , 2014 , 518, 326-341	6	35
180	Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streams. <i>Environmental Microbiology</i> , 2013 , 15, 1115-31	5.2	36
179	Characterization of IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy. Organic Geochemistry, 2013, 65, 19-28	3.1	79
178	Rapid runoff via shallow throughflow and deeper preferential flow in a boreal catchment underlain by frozen silt (Alaska, USA). <i>Hydrogeology Journal</i> , 2013 , 21, 93-106	3.1	48
177	Hydrodynamic shear removal of the nuisance stalk-forming diatom Didymosphenia geminata. <i>Limnology & Oceanography Fluids & Environments</i> , 2013 , 3, 256-268		7
176	Physicochemical and biological dynamics in a coastal Antarctic lake as it transitions from frozen to open water. <i>Antarctic Science</i> , 2013 , 25, 663-675	1.7	5
175	Modeling Nitrogen Transformations in Dry Valley Streams, Antarctica. <i>Antarctic Research Series</i> , 2013 , 141-151		1
174	Longitudinal Patterns in Algal Abundance and Species Distribution In Meltwater Streams In Taylor Valley, Southern Victoria Land, Antarctica. <i>Antarctic Research Series</i> , 2013 , 109-127		18
173	Microbial growth under humic-free conditions in a supraglacial stream system on the Cotton Glacier, Antarctica. <i>Environmental Research Letters</i> , 2013 , 8, 035022	6.2	19
172	Environmental factors influencing diatom communities in Antarctic cryoconite holes. <i>Environmental Research Letters</i> , 2013 , 8, 045006	6.2	32
171	The role of dissolved organic matter (DOM) quality in the growth enhancement of Alexandrium fundyense (Dinophyceae) in laboratory culture(1). <i>Journal of Phycology</i> , 2013 , 49, 546-54	3	5
170	Characterization of fulvic acid fractions of dissolved organic matter during ice-out in a hyper-eutrophic, coastal pond in Antarctica. <i>Environmental Research Letters</i> , 2013 , 8, 045015	6.2	18
169	Hydrologic Processes Influencing Streamflow Variation in Fryxell Basin, Antarctica. <i>Antarctic Research Series</i> , 2013 , 93-108		23
168	Quantifying sources of increasing zinc from acid rock drainage in an alpine catchment under a changing hydrologic regime. <i>Hydrological Processes</i> , 2013 , 27, 721-733	3.3	9
167	The influence of stream thermal regimes and preferential flow paths on hyporheic exchange in a glacial meltwater stream. <i>Water Resources Research</i> , 2013 , 49, 5552-5569	5.4	18
166	Hydrologic controls on the transport and cycling of carbon and nitrogen in a boreal catchment underlain by continuous permafrost. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2013 , 118, 698-	-7∮2 ⁷	57

(2010-2013)

165	Geochemical Linkages Among Glaciers, Streams and Lakes Within the Taylor Valley, Geochemical Linkages Among Glaciers, Streams And Lakes Within The Taylor Valley, Antartica. <i>Antarctic Research Series</i> , 2013 , 77-92		11	
164	Spectral evaluation of watershed DOM and DBP precursors. <i>Journal - American Water Works Association</i> , 2013 , 105, E173-E188	0.5	11	
163	Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed. <i>Marine Pollution Bulletin</i> , 2012 , 64, 1678-87	6.7	63	
162	Microbial life at -13 LC in the brine of an ice-sealed Antarctic lake. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 20626-31	11.5	117	
161	Climate-change-driven deterioration of water quality in a mineralized watershed. <i>Environmental Science & Environmental & Envi</i>	10.3	78	
160	New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the northeastern United States. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	97	
159	The role of dissolved organic matter in arctic surface waters in the photolysis of hexachlorobenzene and lindane. <i>Journal of Geophysical Research</i> , 2012 , 117,		13	
158	Carbon, metals, and grain size correlate with bacterial community structure in sediments of a high arsenic aquifer. <i>Frontiers in Microbiology</i> , 2012 , 3, 82	5.7	19	
157	The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem. <i>Ecosphere</i> , 2012 , 3, art17	3.1	47	
156	Automated measurement of diatom size. Limnology and Oceanography: Methods, 2012, 10, 882-890	2.6	19	
155	Hydrologic processes influence diatom community composition in Dry Valley streams. <i>Journal of the North American Benthological Society</i> , 2011 , 30, 1057-1073		38	
154	Simulating unsteady flow, anabranching, and hyporheic dynamics in a glacial meltwater stream using a coupled surface water routing and groundwater flow model. <i>Water Resources Research</i> , 2011 , 47,	5.4	25	
153	When a habitat freezes solid: microorganisms over-winter within the ice column of a coastal Antarctic lake. <i>FEMS Microbiology Ecology</i> , 2011 , 76, 401-12	4.3	22	
152	Hydrological Connectivity of the Landscape of the McMurdo Dry Valleys, Antarctica. <i>Geography Compass</i> , 2011 , 5, 666-681	2.4	41	
151	15N and 13C{14N} NMR investigation of the major nitrogen-containing segment in an aquatic fulvic acid: evidence for a hydantoin derivative. <i>Magnetic Resonance in Chemistry</i> , 2011 , 49, 775-80	2.1	13	
150	Spectral Methods to Advance Understanding of Dissolved Organic Carbon Dynamics in Forested Catchments. <i>Ecological Studies</i> , 2011 , 117-135	1.1	23	
149	Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. <i>Limnology and Oceanography: Methods</i> , 2010 , 8, 67-78	2.6	52	
148	Communicating with the public: opportunities and rewards for individual ecologists. <i>Frontiers in Ecology and the Environment</i> , 2010 , 8, 292-298	5.5	45	

147	Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. <i>Environmental Science & Environmental Sci</i>	10.3	160
146	Comparison of seasonal changes in fluorescent dissolved organic matter among aquatic lake and stream sites in the Green Lakes Valley. <i>Journal of Geophysical Research</i> , 2010 , 115,		69
145	Effect of unsteady flow on nitrate loss in an oligotrophic, glacial meltwater stream. <i>Journal of Geophysical Research</i> , 2010 , 115,		14
144	Effects of short-term drying and irrigation on electron flow in mesocosms of a northern bog and an alpine fen. <i>Environmental Science & Environmental </i>	10.3	30
143	Overcoming <code>Bcophobiallfostering</code> environmental empathy through narrative in children's science literature. <i>Frontiers in Ecology and the Environment</i> , 2010 , 8, e10-e15	5.5	13
142	Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. <i>Antarctic Science</i> , 2010 , 22, 662-672	1.7	77
141	New light on a dark subject: comment. <i>Aquatic Sciences</i> , 2010 , 72, 269-275	2.5	50
140	Effects of short-term drying and irrigation on CO2 and CH4 production and emission from mesocosms of a northern bog and an alpine fen. <i>Biogeochemistry</i> , 2010 , 100, 89-103	3.8	44
139	Physiochemical properties influencing biomass abundance and primary production in Lake Hoare, Antarctica. <i>Ecological Modelling</i> , 2010 , 221, 1184-1193	3	6
138	Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. <i>Limnology and Oceanography: Methods</i> , 2010 , 8, 67-78	2.6	102
137	Factors controlling streambed coverage of Didymosphenia geminata in two regulated streams in the Colorado Front Range. <i>Hydrobiologia</i> , 2009 , 630, 207-218	2.4	39
136	Production of microbially-derived fulvic acid from photolysis of quinone-containing extracellular products of phytoplankton. <i>Aquatic Sciences</i> , 2009 , 71, 170-178	2.5	26
135	Characterizing chlorine oxidation of dissolved organic matter and disinfection by-product formation with fluorescence spectroscopy and parallel factor analysis. <i>Journal of Geophysical Research</i> , 2009 , 114,		37
134	Response of the Phytoplankton Community in an Alpine Lake to Drought Conditions: Colorado Rocky Mountain Front Range, U.S.A. <i>Arctic, Antarctic, and Alpine Research</i> , 2009 , 41, 191-203	1.8	14
133	Lakes and reservoirs as regulators of carbon cycling and climate. <i>Limnology and Oceanography</i> , 2009 , 54, 2298-2314	4.8	1528
132	A model of degradation and production of three pools of dissolved organic matter in an alpine lake. <i>Limnology and Oceanography</i> , 2009 , 54, 2213-2227	4.8	62
131	Alpine lake optical properties as sentinels of dust deposition and global change. <i>Limnology and Oceanography</i> , 2009 , 54, 2386-2400	4.8	41
130	Inland diatoms from the McMurdo Dry Valleys and James Ross Island, Antarctica. <i>Botany</i> , 2008 , 86, 13	78 1 1392	45

(2006-2008)

129	Effects of Nutrient Enrichment on Phytoplankton in an Alpine Lake, Colorado, U.S.A. <i>Arctic, Antarctic, and Alpine Research</i> , 2008 , 40, 55-64	1.8	24
128	Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antarctica. <i>Antarctic Science</i> , 2008 , 20, 499-509	1.7	115
127	Dissolved organic matter accumulation, reactivity, and redox state in ground water of a recharge wetland. <i>Wetlands</i> , 2008 , 28, 747-759	1.7	29
126	High-latitude rivers and streams 2008 , 83-102		8
125	Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. <i>Journal of Geophysical Research</i> , 2007 , 112,		78
124	Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/a		132
123	Chemical characterization of DOM in channels of a seasonal wetland. <i>Aquatic Sciences</i> , 2007 , 69, 456-47	12.5	43
122	Effects of acid rock drainage on stocked rainbow trout (Oncorhynchus mykiss): an in-situ, caged fish experiment. <i>Environmental Monitoring and Assessment</i> , 2007 , 130, 111-27	3.1	8
121	Photooxidation of wetland and riverine dissolved organic matter: altered copper complexation and organic composition. <i>Hydrobiologia</i> , 2007 , 579, 95-113	2.4	54
120	Sources and fates of dissolved organic carbon in lakes as determined by whole-lake carbon isotope additions. <i>Biogeochemistry</i> , 2007 , 84, 115-129	3.8	69
119	Photochemical control of copper complexation by dissolved organic matter in Rocky Mountain streams, Colorado. <i>Limnology and Oceanography</i> , 2007 , 52, 766-779	4.8	38
118	Characterization of a nitrogen-rich fulvic acid and its precursor algae from solid state NMR. <i>Organic Geochemistry</i> , 2007 , 38, 1277-1292	3.1	77
117	Probing the oxidationDeduction properties of terrestrially and microbially derived dissolved organic matter. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 3003-3015	5.5	119
116	Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: A long-term geomorphological experiment. <i>Geomorphology</i> , 2007 , 89, 186-204	4.3	62
115	Experimental investigations into processes controlling stream and hyporheic temperatures, Fryxell Basin, Antarctica. <i>Advances in Water Resources</i> , 2006 , 29, 130-153	4.7	58
114	A Stable Isotopic Investigation of a Polar Desert Hydrologic System, McMurdo Dry Valleys, Antarctica. <i>Arctic, Antarctic, and Alpine Research</i> , 2006 , 38, 60-71	1.8	54
113	Spatial and Temporal Active Layer Dynamics along Three Glacial Meltwater Streams in the McMurdo Dry Valleys, Antarctica. <i>Arctic, Antarctic, and Alpine Research</i> , 2006 , 38, 42-53	1.8	33
112	Hyporheic exchange and fulvic acid redox reactions in an Alpine stream/wetland ecosystem, Colorado Front Range. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	75

111	Antarctic climate cooling and response of diatoms in glacial meltwater streams. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	48
110	Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. <i>Environmental Science & Environmental Science & Environme</i>	10.3	1043
109	A temperature-index model of stream flow at below-freezing temperatures in Taylor Valley, Antarctica. <i>Annals of Glaciology</i> , 2005 , 40, 76-82	2.5	32
108	Sensitivity analysis of conservative and reactive stream transient storage models applied to field data from multiple-reach experiments. <i>Advances in Water Resources</i> , 2005 , 28, 479-492	4.7	41
107	Effects of annual flooding on dissolved organic carbon dynamics within a pristine wetland, the Okavango Delta, Botswana. <i>Wetlands</i> , 2005 , 25, 622-638	1.7	71
106	Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. <i>Global Change Biology</i> , 2005 , 11, 231-238	11.4	159
105	Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes. <i>Biogeochemistry</i> , 2005 , 74, 231-255	3.8	124
104	The Landscape Continuum: A Model for High-Elevation Ecosystems. <i>BioScience</i> , 2004 , 54, 111	5.7	96
103	Reach-Scale Cation Exchange Controls on Major Ion Chemistry of an Antarctic Glacial Meltwater Stream. <i>Aquatic Geochemistry</i> , 2004 , 10, 221-238	1.7	18
102	Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake. <i>Aquatic Sciences</i> , 2004 , 66, 27-46	2.5	51
101	Chemical characterization of dissolved organic material in Pony Lake, a saline coastal pond in Antarctica. <i>Marine Chemistry</i> , 2004 , 89, 327-337	3.7	74
100	Conservative and reactive solute transport in constructed wetlands. <i>Water Resources Research</i> , 2004 , 40,	5.4	69
99	Inorganic N and P dynamics of Antarctic glacial meltwater streams as controlled by hyporheic exchange and benthic autotrophic communities. <i>Journal of the North American Benthological Society</i> , 2004 , 23, 171-188		101
98	Biogeochemical processes controlling midday ferrous iron maxima in stream waters affected by acid rock drainage. <i>Applied Geochemistry</i> , 2004 , 19, 1075-1084	3.5	19
97	Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. <i>Limnology and Oceanography</i> , 2004 , 49, 1884-1895	4.8	88
96	Direct and indirect effects of mine drainage on bacterial processes in mountain streams. <i>Journal of the North American Benthological Society</i> , 2003 , 22, 276-291		18
95	Surface glaciochemistry of Taylor Valley, southern Victoria Land, Antarctica and its relationship to stream chemistry. <i>Hydrological Processes</i> , 2003 , 17, 115-130	3.3	68
94	Determining long time-scale hyporheic zone flow paths in Antarctic streams. <i>Hydrological Processes</i> , 2003 , 17, 1691-1710	3.3	89

(2001-2003)

93	Sources and chemical character of dissolved organic carbon across an alpine/subalpine ecotone, Green Lakes Valley, Colorado Front Range, United States. <i>Water Resources Research</i> , 2003 , 39,	5.4	87
92	Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids. <i>Water Resources Research</i> , 2003 , 39,	5.4	26
91	Abandoned mines, mountain sports, and climate variability: Implications for the Colorado tourism economy. <i>Eos</i> , 2003 , 84, 377	1.5	13
90	Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. <i>Water Research</i> , 2003 , 37, 4295-303	12.5	393
89	Antarctic climate cooling and terrestrial ecosystem response. <i>Nature</i> , 2002 , 415, 517-20	50.4	349
88	Late fall phytoplankton dynamics in three lakes, Rocky Mountain National Park. <i>Hydrobiologia</i> , 2002 , 472, 249-263	2.4	5
87	The biogeochemistry of Si in the McMurdo Dry Valley lakes, Antarctica. <i>International Journal of Astrobiology</i> , 2002 , 1, 401-413	1.4	6
86	Spectrofluorescence of sediment humic substances and historical changes of lacustrine organic matter provenance in response to atmospheric nutrient enrichment. <i>Environmental Science & Environmental Science & Technology</i> , 2002 , 36, 3217-23	10.3	68
85	Fulvic acid oxidation state detection using fluorescence spectroscopy. <i>Environmental Science & Environmental Science & Technology</i> , 2002 , 36, 3170-5	10.3	132
84	In-stream sorption of fulvic acid in an acidic stream: A stream-scale transport experiment. <i>Water Resources Research</i> , 2002 , 38, 6-1-6-12	5.4	51
83	Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry Valleys. <i>Water Resources Research</i> , 2002 , 38, 15-1-15-17	5.4	120
82	Seasonal varability of metals transport through a wetland impacted by mine drainage in the Rocky Mountains. <i>Environmental Science & Environmental Sci</i>	10.3	38
81	Redox processes controlling manganese fate and transport in a mountain stream. <i>Environmental Science & Environmental </i>	10.3	56
80	Direct observations of aluminosilicate weathering in the hyporheic zone of an Antarctic Dry Valley stream. <i>Geochimica Et Cosmochimica Acta</i> , 2002 , 66, 1335-1347	5.5	81
79	pH dependence of iron photoreduction in a rocky mountain stream affected by acid mine drainage. <i>Hydrological Processes</i> , 2001 , 15, 1979-1992	3.3	57
78	Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. <i>Limnology and Oceanography</i> , 2001 , 46, 38-48	4.8	1715
77	LITTER BREAKDOWN IN MOUNTAIN STREAMS AFFECTED BY MINE DRAINAGE: BIOTIC MEDIATION OF ABIOTIC CONTROLS 2001 , 11, 506-516		87
76	The Mcmurdo Dry Valleys Long-Term Ecological Rsearch Program: New understanding of the biogeochemistry of the Dry Valley Lakes: A review 1 This work was supported by the following NSF grants: OPP-9211773 and OPP-9813061. We thank our colleagues Andrew Fountain, Ross Virginia,	2.2	16

years have helped in data collection, analysis, and manipulation; we thank them all, but especially Rob Edwards and Craig Wolf. We are. *Polar Geography*, **2001**, 25, 202-217

75	FRESHWATER ECOSYSTEMS AND CLIMATE CHANGE: RECENT ASSESSMENTS AND RECOMMENDATIONS. <i>Limnology and Oceanography Bulletin</i> , 2001 , 10, 61-65	0.9	2
74	Bacterial dissolved organic carbon demand in McMurdo Dry Valley lakes, Antarctica. <i>Limnology and Oceanography</i> , 2001 , 46, 1189-1194	4.8	44
73	Effects of asynchronous snowmelt on flushing of dissolved organic carbon: a mixing model approach. <i>Hydrological Processes</i> , 2000 , 14, 3291-3308	3.3	99
72	PHYTOPLANKTON DYNAMICS IN A STABLY STRATIFIED ANTARCTIC LAKE DURING WINTER DARKNESS. <i>Journal of Phycology</i> , 2000 , 36, 852-861	3	86
71	Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica. <i>Freshwater Biology</i> , 2000 , 44, 649-661	3.1	38
70	Ecological Legacies: Impacts on Ecosystems of the McMurdo Dry Valleys. <i>BioScience</i> , 1999 , 49, 1009-10	13 .7	70
69	Physical Controls on the Taylor Valley Ecosystem, Antarctica. <i>BioScience</i> , 1999 , 49, 961-971	5.7	118
68	Dry Valley Streams in Antarctica: Ecosystems Waiting for Water. <i>BioScience</i> , 1999 , 49, 985-995	5.7	166
67	Reactive solute transport in streams: A surface complexation approach for trace metal sorption. <i>Water Resources Research</i> , 1999 , 35, 3829-3840	5.4	70
66	The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments. <i>Water Resources Research</i> , 1999 , 35, 1895-	19502	118
65	Binding of Polychlorinated Biphenyls to Aquatic Humic Substances: The Role of Substrate and Sorbate Properties on Partitioning. <i>Environmental Science & Environmental Science</i>	10.3	71
64	Influences of water and substrate quality for periphyton in a montane stream affected by acid mine drainage. <i>Limnology and Oceanography</i> , 1999 , 44, 804-809	4.8	58
63	Physical Controls on the Taylor Valley Ecosystem, Antarctica. <i>BioScience</i> , 1999 , 49, 961	5.7	117
62	Dry Valley Streams in Antarctica: Ecosystems Waiting for Water. <i>BioScience</i> , 1999 , 49, 985	5.7	103
61	Ecological Legacies: Impacts on Ecosystems of the McMurdo Dry Valleys. <i>BioScience</i> , 1999 , 49, 1009	5.7	46
60	Diel variation in element concentrations, Peru Creek, Summit County, Colorado. <i>Journal of Geochemical Exploration</i> , 1998 , 64, 141-145	3.8	43
59	Variation in Photoreactivity of Iron Hydroxides Taken from an Acidic Mountain Stream. <i>Environmental Science & Environmental &</i>	10.3	22
58	Quinone Moieties Act as Electron Acceptors in the Reduction of Humic Substances by Humics-Reducing Microorganisms. <i>Environmental Science & Description of Humic Substances and Personal Science & Description of Humic Substances and Personal Property (No. 1998)</i> , 32, 2984-2989	10.3	622

57	Sources and Age of Aquatic Humus. <i>Ecological Studies</i> , 1998 , 9-39	1.1	75
56	Carbon Cycling in Terrestrial Environments 1998 , 577-610		6
55	Analysis of Transient Storage Subject to Unsteady Flow: Diel Flow Variation in an Antarctic Stream. Journal of the North American Benthological Society, 1998 , 17, 143-154		105
54	Canada Stream: A Glacial Meltwater Stream in Taylor Valley, South Victoria Land, Antarctica. Journal of the North American Benthological Society, 1997 , 16, 14-17		36
53	Chemical Characteristics of Particulate, Colloidal, and Dissolved Organic Material in Loch Vale Watershed, Rocky Mountain National Park. <i>Biogeochemistry</i> , 1997 , 36, 99-124	3.8	137
52	The microbial plankton of Lake Fryxell, southern Victoria Land, Antarctica during the summers of 1992 and 1994. <i>Polar Biology</i> , 1997 , 17, 54-61	2	51
51	ASSESSMENT OF CLIMATE CHANGE AND FRESHWATER ECOSYSTEMS OF THE ROCKY MOUNTAINS, USA AND CANADA 1997 , 11, 903-924		111
50	Response characteristics of DOC flushing in an alpine catchment 1997 , 11, 1635-1647		306
49	Copper Speciation and Binding by Organic Matter in Copper-Contaminated Streamwater. <i>Environmental Science & Environmental Sci</i>	10.3	107
48	Overview of a simple model describing variation of dissolved organic carbon in an upland catchment. <i>Ecological Modelling</i> , 1996 , 86, 183-188	3	109
47	Reactive Solute Transport in Streams: 2. Simulation of a pH Modification Experiment. <i>Water Resources Research</i> , 1996 , 32, 419-430	5.4	35
46	Reactive Solute Transport in an Acidic Stream: Experimental pH Increase and Simulation of Controls on pH, Aluminum, and Iron. <i>Environmental Science & Environmental Science &</i>	10.3	64
45	Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica. <i>Journal of Paleolimnology</i> , 1996 , 17, 403-420	2.1	59
44	Geochemistry of aquatic humic substances in the Lake Fryxell Basin, Antarctica. <i>Biogeochemistry</i> , 1996 , 34, 157	3.8	69
43	Freshwater Ecosystems and Their Management: A National Initiative. <i>Science</i> , 1995 , 270, 584-585	33.3	64
))·)	,
42	Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction. <i>Limnology and Oceanography</i> , 1995 , 40, 938-946	4.8	57
	Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by		,

39	Coupling of hydrologic transport and chemical reactions in a stream affected by Acid mine drainage. <i>Environmental Science & Environmental Science & E</i>	10.3	65
38	Aquatic fulvic acids in algal-rich antarctic ponds. <i>Limnology and Oceanography</i> , 1994 , 39, 1972-1979	4.8	169
37	Effects of Instream pH Modification on Transport of Sulfide-Oxidation Products. <i>ACS Symposium Series</i> , 1993 , 224-243	0.4	7
36	Dissolved organic material in dry valley lakes: A comparison of Lake Fryxell, Lake Hoare and Lake Vanda. <i>Antarctic Research Series</i> , 1993 , 119-133		15
35	Seasonal relationships between planktonic microorganisms and dissolved organic material in an alpine stream. <i>Biogeochemistry</i> , 1993 , 21, 39-59	3.8	47
34	Humic substances and trace metals associated with Fe and Al oxides deposited in an acidic mountain stream. <i>Science of the Total Environment</i> , 1992 , 117-118, 485-498	10.2	19
33	Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of Deer Creek with the Snake River, Summit County, Colorado. <i>Environmental Science & Environmental Science</i>	10.3	305
32	Aquatic fulvic acids in microbially based ecosystems: Results from two desert lakes in Antarctica. <i>Limnology and Oceanography</i> , 1991 , 36, 998-1006	4.8	87
31	Sources of dissolved and particulate organic material in Loch Vale Watershed, Rocky Mountain National Park, Colorado, USA. <i>Biogeochemistry</i> , 1991 , 15, 89	3.8	55
30	Phytoplankton Dynamics in Three Rocky Mountain Lakes, Colorado, U.S.A <i>Arctic and Alpine Research</i> , 1990 , 22, 264		37
29	Characterization of transport in an acidic and metal-rich mountain stream based on a lithium tracer injection and simulations of transient storage. <i>Water Resources Research</i> , 1990 , 26, 989-1000	5.4	82
28	The Chemistry of Iron, Aluminum, and Dissolved Organic Material in Three Acidic, Metal-Enriched, Mountain Streams, as Controlled by Watershed and in-Stream Processes. <i>Water Resources Research</i> , 1990 , 26, 3087-3100	5.4	11
27	The chemistry of iron, aluminum and dissolved organic material in three acidic metal-enriched, mountain stream processes. <i>Water Resources Research</i> , 1990 , 26, 3087-3100	5.4	69
26	Reactive iron transport in an acidic mountain stream in Summit County, Colorado: A hydrologic perspective. <i>Geochimica Et Cosmochimica Acta</i> , 1989 , 53, 2225-2234	5.5	56
25	Iron photoreduction and oxidation in an acidic mountain stream. <i>Science</i> , 1988 , 240, 637-40	33.3	233
24	Diel Variations in Iron Chemistry in an Acidic Stream in the Colorado Rocky Mountains, U.S.A <i>Arctic and Alpine Research</i> , 1988 , 20, 492		54
23	Evaluation of natural tracers in an acidic and metal-rich stream. Water Resources Research, 1987 , 23, 827	7-58.34.6	48
22	Biogeochemistry of Aquatic Humic Substances in Thoreau's Bog, Concord, Massachusetts. <i>Ecology</i> , 1985 , 66, 1339-1352	4.6	128

21	The ecological effect of acid conditions and precipitation of hydrous metal oxides in a Rocky Mountain stream. <i>Hydrobiologia</i> , 1984 , 119, 129-138	2.4	89
20	Complexation of copper by aquatic humic substances from different environments. <i>Science of the Total Environment</i> , 1983 , 28, 65-76	10.2	85
19	CuSO4 treatment of nuisance algal blooms in drinking water reservoirs. <i>Environmental Management</i> , 1983 , 7, 311-320	3.1	61
18	Toxicity of volcanic-ash leachate to a blue-green alga. Results of a preliminary bioassay experiment. <i>Environmental Science & Environmental Science &</i>	10.3	20
17	Chemical and biological processes controlling the response of a freshwater ecosystem to copper stress: A field study of the CuS04 treatment of Mill Pond Reservoir, Burlington, Massachusetts1. <i>Limnology and Oceanography</i> , 1981 , 26, 518-531	4.8	25
16	Chemical and biological processes controlling the response of a freshwater ecosystem to copper stress: A field study of the CuSO4 treatment of Mill Pond Reservoir, Burlington, Massachusetts. <i>Limnology and Oceanography</i> , 1981 , 26, 618-531	4.8	38
15	Copper complexation by siderophores from filamentous blue-green algae1. <i>Limnology and Oceanography</i> , 1980 , 25, 62-71	4.8	98
14	Release of weak and strong copper-complexing agents by algae1. <i>Limnology and Oceanography</i> , 1979 , 24, 823-837	4.8	161
13	Solute and sediment fluxes from rivers and streams in the McMurdo Dry Valleys, Antarctica260-272		
12	Fluorescence Indices and Their Interpretation303-338		31
11	Factors promoting microbial diversity in the McMurdo Dry Valleys, Antarctica221-257		16
10	Streamflow, water-temperature, and specific-conductance data for selected streams draining into Lake Fryxell, lower Taylor Valley, Victoria Land, Antarctica, 1990-92. <i>US Geological Survey Open-File Report</i> ,		11
9	Biogeochemical and suspended sediment responses to permafrost degradation in stream banks in Taylor Valley, Antarctica		1
8	The Diatoms: Applications for the Environmental and Earth Sciences267-284		17
7	Trends in dissolved organic matter cycling, sediment microbiomes, and methylmercury production across vegetation heterogeneity in a Great Lakes wetland		3
6	Unraveling the effects of spatial variability and relic DNA on the temporal dynamics of soil microbial communities		4
5	Geologic analogies between the surface of Mars and the McMurdo Dry Valleys: microclimate-related geomorphic features and evidence for climate change9-77		4
4	Antarctic McMurdo Dry Valley stream ecosystems as analog to fluvial systems on Mars139-159		2

- 3 Saline lakes and ponds in the McMurdo Dry Valleys: ecological analogs to martian paleolake environments160-1694
- The biogeochemistry and hydrology of McMurdo Dry Valley glaciers: is there life on martian ice now?195-220 7
- From the Heroic Age to today: What diatoms from Shackleton's Nimrod expedition can tell us about the ecological trajectory of Antarctic ponds. *Limnology and Oceanography Letters*,

7.9 0