Christophe Randin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4392818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A quantitative assessment of rockfall influence on forest structure in the Swiss Alps. European Journal of Forest Research, 2021, 140, 91-104.	1.1	6
2	Toward a definition of Essential Mountain Climate Variables. One Earth, 2021, 4, 805-827.	3.6	26
3	Climate Change Impacts the Protective Effect of Forests: A Case Study in Switzerland. Frontiers in Forests and Global Change, 2021, 4, .	1.0	6
4	The tempo of greening in the European Alps: Spatial variations on a common theme. Global Change Biology, 2021, 27, 5614-5628.	4.2	44
5	Climate change impacts on water resources in the Mediterranean. Regional Environmental Change, 2020, 20, 1.	1.4	43
6	Process-based models outcompete correlative models in projecting spring phenology of trees in a future warmer climate. Agricultural and Forest Meteorology, 2020, 285-286, 107931.	1.9	13
7	Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 2020, 239, 111626.	4.6	142
8	Moderately urbanized areas as a conservation opportunity for an endangered songbird. Landscape and Urban Planning, 2019, 181, 1-9.	3.4	9
9	Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agricultural and Forest Meteorology, 2018, 252, 220-230.	1.9	87
10	Forecasting range shifts of a coldâ€adapted species under climate change: are genomic and ecological diversity within species crucial for future resilience?. Ecography, 2018, 41, 1357-1369.	2.1	28
11	Outstanding Challenges in the Transferability of Ecological Models. Trends in Ecology and Evolution, 2018, 33, 790-802.	4.2	403
12	How Do Cold-Adapted Plants Respond to Climatic Cycles? Interglacial Expansion Explains Current Distribution and Genomic Diversity in Primula farinosa L Systematic Biology, 2017, 66, 715-736.	2.7	26
13	The contribution of cold air pooling to the distribution of a rare and endemic plant of the Alps. Plant Ecology and Diversity, 2017, 10, 29-42.	1.0	15
14	Do floral and niche shifts favour the establishment and persistence of newly arisen polyploids? A case study in an Alpine primrose. Annals of Botany, 2017, 119, 81-93.	1.4	22
15	ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 2017, 40, 774-787.	2.1	703
16	A Comparison of Climatic Niches of the Same Alpine Plant Species in the Central Caucasus and the Alps. Geobotany Studies, 2017, , 133-144.	0.2	0
17	Where, why and how? Explaining the lowâ€ŧemperature range limits of temperate tree species. Journal of Ecology, 2016, 104, 1076-1088.	1.9	171
18	Barn owls display larger black feather spots in cooler regions of the British Isles. Biological Journal of the Linnean Society, 2016, 119, 445-454.	0.7	8

CHRISTOPHE RANDIN

#	Article	IF	CITATIONS
19	Water availability predicts forest canopy height at the globalÂscale. Ecology Letters, 2015, 18, 1311-1320.	3.0	87
20	Gloger's rule in North American Barn Owls. Auk, 2015, 132, 321-332.	0.7	24
21	Validation of and comparison between a semidistributed rainfall–runoff hydrological model (PREVAH) and a spatially distributed snowâ€evolution model (SnowModel) for snow cover prediction in mountain ecosystems. Ecohydrology, 2015, 8, 1181-1193.	1.1	5
22	A spatial modelling framework for assessing climate change impacts on freshwater ecosystems: Response of brown trout (Salmo trutta L.) biomass to warming water temperature. Ecological Modelling, 2015, 313, 1-12.	1.2	19
23	Accounting for tree line shift, glacier retreat and primary succession in mountain plant distribution models. Diversity and Distributions, 2014, 20, 1379-1391.	1.9	24
24	Genetic vs. nonâ€genetic responses of leaf morphology and growth to elevation in temperate tree species. Functional Ecology, 2014, 28, 243-252.	1.7	39
25	Topoâ€climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Global Change Biology, 2014, 20, 2286-2300.	4.2	85
26	Environment and dispersal paths override life strategies and residence time in determining regional patterns of invasion by alien plants. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 1-10.	1.1	26
27	Spring frost and growing season length coâ€control the cold range limits of broadâ€leaved trees. Journal of Biogeography, 2014, 41, 773-783.	1.4	105
28	Functional homogenization of bumblebee communities in alpine landscapes under projected climate change. Climate Change Responses, 2014, 1, .	2.6	44
29	A framework for assessing the scale of influence of environmental factors on ecological patterns. Ecological Complexity, 2014, 20, 151-156.	1.4	28
30	Very high resolution environmental predictors in species distribution models. Progress in Physical Geography, 2014, 38, 79-96.	1.4	95
31	Patternâ€recognition ecological niche models fit to presenceâ€only and presence–absence data. Methods in Ecology and Evolution, 2014, 5, 761-770.	2.2	17
32	How accurately can minimum temperatures at the cold limits of tree species be extrapolated from weather station data?. Agricultural and Forest Meteorology, 2014, 184, 257-266.	1.9	46
33	Predicting fine-scale tree species abundance patterns using biotic variables derived from LiDAR and high spatial resolution imagery. Remote Sensing of Environment, 2014, 150, 120-131.	4.6	47
34	Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Oecologia, 2013, 171, 663-678.	0.9	122
35	Using Life Strategies to Explore the Vulnerability of Ecosystem Services to Invasion by Alien Plants. Ecosystems, 2013, 16, 678-693.	1.6	22
36	Divergent and narrower climatic niches characterize polyploid species of European primroses in <i>Primula</i> sect. <i>Aleuritia</i> . Journal of Biogeography, 2013, 40, 1278-1289.	1.4	90

CHRISTOPHE RANDIN

#	Article	IF	CITATIONS
37	Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. Journal of Environmental Management, 2013, 131, 185-195.	3.8	68
38	The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 2013, 22, 52-63.	2.7	121
39	Thermal niches are more conserved at cold than warm limits in arcticâ€alpine plant species. Global Ecology and Biogeography, 2013, 22, 933-941.	2.7	60
40	Disentangling the effects of global climate and regional land-use change on the current and future distribution of mangroves in South Africa. Biodiversity and Conservation, 2013, 22, 1369-1390.	1.2	45
41	Do the elevational limits of deciduous tree species match their thermal latitudinal limits?. Global Ecology and Biogeography, 2013, 22, 913-923.	2.7	52
42	Working toward integrated models of alpine plant distribution. Alpine Botany, 2013, 123, 41-53.	1.1	31
43	A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120479.	1.8	74
44	Response to Comment on "Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders― Science, 2012, 338, 193-193.	6.0	21
45	Unrestricted quality of seeds in European broad-leaved tree species growing at the cold boundary of their distribution. Annals of Botany, 2012, 109, 473-480.	1.4	17
46	Temperature variation among mangrove latitudinal range limits worldwide. Trees - Structure and Function, 2012, 26, 1919-1931.	0.9	115
47	Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders. Science, 2012, 335, 1344-1348.	6.0	689
48	Tree recruitment of European tree species at their current upper elevational limits in the Swiss Alps. Journal of Biogeography, 2012, 39, 1439-1449.	1.4	67
49	Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 2012, 21, 481-497.	2.7	1,130
50	21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 2011, 17, 2330-2341.	4.2	478
51	Where will conflicts between alien and rare species occur after climate and land-use change? A test with a novel combined modelling approach. Biological Invasions, 2011, 13, 1209-1227.	1.2	63
52	Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography, 2010, 33, 1004-1014.	2.1	148
53	What drives invasibility? A multiâ€model inference test and spatial modelling of alien plant species richness patterns in northern Portugal. Ecography, 2010, 33, 1081-1092.	2.1	59
54	Variation in habitat suitability does not always relate to variation in species' plant functional traits. Biology Letters, 2010, 6, 120-123.	1.0	80

CHRISTOPHE RANDIN

#	Article	IF	CITATIONS
55	Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 2010, 143, 2647-2657.	1.9	187
56	Changes in reproductive investment with altitude in an alpine plant. Journal of Plant Ecology, 2009, 2, 125-134.	1.2	73
57	Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Global Change Biology, 2009, 15, 209-220.	4.2	101
58	Climate change and plant distribution: local models predict highâ€elevation persistence. Global Change Biology, 2009, 15, 1557-1569.	4.2	450
59	Land use improves spatial predictions of mountain plant abundance but not presenceâ€absence. Journal of Vegetation Science, 2009, 20, 996-1008.	1.1	57
60	Predicting future distributions of mountain plants under climate change: does dispersal capacity matter?. Ecography, 2009, 32, 34-45.	2.1	229
61	Importance of abiotic stress as a rangeâ€limit determinant for European plants: insights from species responses to climatic gradients. Global Ecology and Biogeography, 2009, 18, 437-449.	2.7	194
62	Introduction of Snow and Geomorphic Disturbance Variables into Predictive Models of Alpine Plant Distribution in the Western Swiss Alps. Arctic, Antarctic, and Alpine Research, 2009, 41, 347-361.	0.4	59
63	Prediction of plant species distributions across six millennia. Ecology Letters, 2008, 11, 357-369.	3.0	183
64	Niche dynamics in space and time. Trends in Ecology and Evolution, 2008, 23, 149-158.	4.2	807
65	Modelling ecological niches with support vector machines. Journal of Applied Ecology, 2006, 43, 424-432.	1.9	270
66	Are niche-based species distribution models transferable in space?. Journal of Biogeography, 2006, 33, 1689-1703.	1.4	638
67	Very high resolution digital elevation models: Do they improve models of plant species distribution?. Ecological Modelling, 2006, 198, 139-153.	1.2	115
68	Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 2006, 199, 142-152.	1.2	1,031