
Nicholas De Greene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4392588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dolutegravir and rat whole embryo culture. Birth Defects Research, 2022, 114, 23-24.	0.8	3
2	Two-Photon Cell and Tissue Level Laser Ablation Methods to Study Morphogenetic Biomechanics. Methods in Molecular Biology, 2022, 2438, 217-230.	0.4	2
3	Eph and Ephrin Variants in Malaysian Neural Tube Defect Families. Genes, 2022, 13, 952.	1.0	1
4	Deficient or Excess Folic Acid Supply During Pregnancy Alter Cortical Neurodevelopment in Mouse Offspring. Cerebral Cortex, 2021, 31, 635-649.	1.6	44
5	Maternal Inositol Status and Neural Tube Defects: A Role for the Human Yolk Sac in Embryonic Inositol Delivery?. Advances in Nutrition, 2021, 12, 212-222.	2.9	25
6	Glycine Cleavage System H Protein Is Essential for Embryonic Viability, Implying Additional Function Beyond the Glycine Cleavage System. Frontiers in Genetics, 2021, 12, 625120.	1.1	12
7	Passive Smoking During the Periconceptional Period and Risk for Neural Tube Defects in Offspring — Five Counties, Shanxi Province, China, 2010–2016. China CDC Weekly, 2021, 3, 778-782.	1.0	3
8	Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice. Nature Communications, 2021, 12, 1159.	5.8	24
9	Hindbrain neuropore tissue geometry determines asymmetric cell-mediated closure dynamics in mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
10	Genetic interaction of Pax3 mutation and canonical Wnt signaling modulates neural tube defects and neural crest abnormalities. Genesis, 2021, 59, e23445.	0.8	6
11	Inositols: From Established Knowledge to Novel Approaches. International Journal of Molecular Sciences, 2021, 22, 10575.	1.8	67
12	Dolutegravir in pregnant mice is associated with increased rates of fetal defects at therapeutic but not at supratherapeutic levels. EBioMedicine, 2021, 63, 103167.	2.7	25
13	Vangl2-environment interaction causes severe neural tube defects, without abnormal neuroepithelial convergent extension. DMM Disease Models and Mechanisms, 2021, , .	1.2	5
14	A new mechanism for cannabidiol in regulating the one arbon cycle and methionine levels inDictyosteliumand in mammalian epilepsy models. British Journal of Pharmacology, 2020, 177, 912-928.	2.7	19
15	Refinement of inducible gene deletion in embryos of pregnant mice. Birth Defects Research, 2020, 112, 196-204.	0.8	14
16	Dynamic acetylation profile during mammalian neurulation. Birth Defects Research, 2020, 112, 205-211.	0.8	2
17	Regulation of glycine metabolism by the glycine cleavage system and conjugation pathway in mouse models of <scp>nonâ€ketotic</scp> hyperglycinemia. Journal of Inherited Metabolic Disease, 2020, 43, 1186-1198.	1.7	17
18	Epithelial dynamics shed light on mechanisms underlying ear canal defects. Development (Cambridge), 2020, 147, .	1.2	11

#	Article	IF	CITATIONS
19	An update on the use of inositols in preventing gestational diabetes mellitus (GDM) and neural tube defects (NTDs). Expert Opinion on Drug Metabolism and Toxicology, 2020, 16, 1187-1198.	1.5	20
20	Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. elegans. Nature Communications, 2020, 11, 1043.	5.8	29
21	Integrin-Mediated Focal Anchorage Drives Epithelial Zippering during Mouse Neural Tube Closure. Developmental Cell, 2020, 52, 321-334.e6.	3.1	46
22	Impaired folate 1-carbon metabolism causes formate-preventable hydrocephalus in glycine decarboxylase–deficient mice. Journal of Clinical Investigation, 2020, 130, 1446-1452.	3.9	16
23	Genetic Basis of Neural Tube Defects. , 2020, , 2275-2294.		1
24	Mouse whole embryo culture: Evaluating the requirement for rat serum as culture medium. Birth Defects Research, 2019, 111, 1165-1177.	0.8	8
25	Aberrant methylation of Pax3 gene and neural tube defects in association with exposure to polycyclic aromatic hydrocarbons. Clinical Epigenetics, 2019, 11, 13.	1.8	27
26	Spinal neural tube closure depends on regulation of surface ectoderm identity and biomechanics by Grhl2. Nature Communications, 2019, 10, 2487.	5.8	44
27	Genetics and Developmental Biology of Closed Dysraphic Conditions. , 2019, , 325-344.		2
28	Rho kinase-dependent apical constriction counteracts M-phase apical expansion to enable mouse neural tube closure. Journal of Cell Science, 2019, 132, .	1.2	19
29	Cellular mechanisms underlying Pax3-related neural tube defects and their prevention by folic acid. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	21
30	Novel mouse model of encephalocele: post-neurulation origin and relationship to open neural tube defects. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	20
31	Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice. Scientific Reports, 2018, 8, 3325.	1.6	5
32	Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina bifida in mouse embryos. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	42
33	Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues. Developmental Biology, 2018, 435, 130-137.	0.9	24
34	Oxidative Stress and Apoptosis in Benzo[a]pyrene-Induced Neural Tube Defects. Free Radical Biology and Medicine, 2018, 116, 149-158.	1.3	68
35	Rho GTPases in mammalian spinal neural tube closure. Small GTPases, 2018, 9, 283-289.	0.7	19
36	Valproic acid disrupts the biomechanics of late spinal neural tube closure in mouse embryos. Mechanisms of Development, 2018, 149, 20-26.	1.7	22

#	Article	IF	CITATIONS
37	Sex differences in the prevalence of neural tube defects and preventive effects of folic acid (FA) supplementation among five counties in northern China: results from a population-based birth defect surveillance programme. BMJ Open, 2018, 8, e022565.	0.8	18
38	Overexpression of Grainyhead-like 3 causes spina bifida and interacts genetically with mutant alleles of Grhl2 and Vangl2 in mice. Human Molecular Genetics, 2018, 27, 4218-4230.	1.4	21
39	Genetically Determined Folate Deficiency Is Associated With Abnormal Hepatic Folate Profiles in the Spontaneously Hypertensive Rat. Physiological Research, 2018, 67, 417-422.	0.4	1
40	Inositol, neural tube closure and the prevention of neural tube defects. Birth Defects Research, 2017, 109, 68-80.	0.8	58
41	High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring. Human Molecular Genetics, 2017, 26, ddx004.	1.4	61
42	Neural tube closure: cellular, molecular and biomechanical mechanisms. Development (Cambridge), 2017, 144, 552-566.	1.2	402
43	Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C.Âelegans. Cell, 2017, 169, 442-456.e18.	13.5	198
44	Claudins are essential for cell shape changes and convergent extension movements during neural tube closure. Developmental Biology, 2017, 428, 25-38.	0.9	24
45	Biomechanical coupling facilitates spinal neural tube closure in mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5177-E5186.	3.3	92
46	Use of highâ€frequency ultrasound to study the prenatal development of cranial neural tube defects and hydrocephalus in <i>Gldc</i> â€deficient mice. Prenatal Diagnosis, 2017, 37, 273-281.	1,1	9
47	Partitioning of One-Carbon Units in Folate and Methionine Metabolism Is Essential for Neural Tube Closure. Cell Reports, 2017, 21, 1795-1808.	2.9	69
48	Genetic Basis of Neural Tube Defects. , 2017, , 1-28.		8
49	Identification of the genomic mutation in Epha4rb-2J/rb-2J mice. Genome, 2016, 59, 439-448.	0.9	2
50	Inositol for the prevention of neural tube defects: a pilot randomised controlled trial. British Journal of Nutrition, 2016, 115, 974-983.	1.2	44
51	Formate supplementation enhances folate-dependent nucleotide biosynthesis and prevents spina bifida in a mouse model of folic acid-resistant neural tube defects. Biochimie, 2016, 126, 63-70.	1.3	23
52	Microtubules, polarity and vertebrate neural tube morphogenesis. Journal of Anatomy, 2016, 229, 63-74.	0.9	34
53	Regulation of cell protrusions by small GTPases during fusion of the neural folds. ELife, 2016, 5, e13273.	2.8	80
54	Rho kinase-dependent actin turnover and actomyosin disassembly are necessary for mouse spinal neural tube closure. Journal of Cell Science, 2015, 128, 2468-81.	1.2	70

#	Article	IF	CITATIONS
55	Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice. Nature Communications, 2015, 6, 6388.	5.8	116
56	Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the <i>splotch</i> mouse model. Magnetic Resonance in Medicine, 2015, 73, 731-739.	1.9	3
57	Cellular basis of neuroepithelial bending during mouse spinal neural tube closure. Developmental Biology, 2015, 404, 113-124.	0.9	64
58	High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. American Journal of Clinical Nutrition, 2015, 101, 646-658.	2.2	120
59	Both the folate cycle and betaineâ€homocysteine methyltransferase contribute methyl groups for DNA methylation in mouse blastocysts. FASEB Journal, 2015, 29, 1069-1079.	0.2	33
60	Interactions between planar cell polarity genes cause diverse neural tube defects. DMM Disease Models and Mechanisms, 2014, 7, 1153-63.	1.2	77
61	Vangl-dependent planar cell polarity signalling is not required for neural crest migration in mammals. Development (Cambridge), 2014, 141, 3153-3158.	1.2	32
62	Neural Tube Defects. Annual Review of Neuroscience, 2014, 37, 221-242.	5.0	465
63	Neural tube defects—disorders of neurulation and related embryonic processes. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 213-227.	5.9	181
64	Folate metabolite profiling of different cell types and embryos suggests variation in folate one-carbon metabolism, including developmental changes in human embryonic brain. Molecular and Cellular Biochemistry, 2013, 378, 229-236.	1.4	28
65	A novel mouse model for genetic variation in 10-formyltetrahydrofolate synthetase exhibits disturbed purine synthesis with impacts on pregnancy and embryonic development. Human Molecular Genetics, 2013, 22, 3705-3719.	1.4	41
66	A coming of age: advanced imaging technologies for characterising the developing mouse. Trends in Genetics, 2013, 29, 700-711.	2.9	42
67	Mutations in ZMYND10, a Gene Essential for Proper Axonemal Assembly of Inner and Outer Dynein Arms in Humans and Flies, Cause Primary Ciliary Dyskinesia. American Journal of Human Genetics, 2013, 93, 346-356.	2.6	167
68	Novel exomphalos genetic mouse model: The importance of accurate phenotypic classification. Journal of Pediatric Surgery, 2013, 48, 2036-2042.	0.8	8
69	Metformin Retards Aging in C.Âelegans by Altering Microbial Folate and Methionine Metabolism. Cell, 2013, 153, 228-239.	13.5	811
70	Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurology, The, 2013, 12, 799-810.	4.9	549
71	Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening. DMM Disease Models and Mechanisms, 2013, 6, 571-9.	1.2	63
72	Nucleotide precursors prevent folic acid-resistant neural tube defects in the mouse. Brain, 2013, 136, 2836-2841.	3.7	25

#	Article	IF	CITATIONS
73	ls <i>LMNB1</i> a susceptibility gene for neural tube defects in humans?. Birth Defects Research Part A: Clinical and Molecular Teratology, 2013, 97, 398-402.	1.6	14
74	Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening. DMM Disease Models and Mechanisms, 2013, 6, 1049-1049.	1.2	13
75	Lamin B1 Polymorphism Influences Morphology of the Nuclear Envelope, Cell Cycle Progression, and Risk of Neural Tube Defects in Mice. PLoS Genetics, 2012, 8, e1003059.	1.5	37
76	Mutations in genes encoding the glycine cleavage system predispose to neural tube defects in mice and humans. Human Molecular Genetics, 2012, 21, 1496-1503.	1.4	100
77	Could microRNAs be biomarkers for neural tube defects?. Journal of Neurochemistry, 2012, 122, 485-486.	2.1	2
78	Epithelial fusion during neural tube morphogenesis. Birth Defects Research Part A: Clinical and Molecular Teratology, 2012, 94, 817-823.	1.6	44
79	Mutations in the planar cell polarity genes <i>CELSR1</i> and <i>SCRIB</i> are associated with the severe neural tube defect craniorachischisis. Human Mutation, 2012, 33, 440-447.	1.1	166
80	Convergent Extension Analysis in Mouse Whole Embryo Culture. Methods in Molecular Biology, 2012, 839, 133-146.	0.4	24
81	Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping. Neurolmage, 2011, 54, 769-778.	2.1	57
82	Quantitative analysis of myo-inositol in urine, blood and nutritional supplements by high-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2759-2763.	1.2	42
83	Regional differences in the expression of laminin isoforms during mouse neural tube development. Matrix Biology, 2011, 30, 301-309.	1.5	23
84	Protein deiminases: New players in the developmentally regulated loss of neural regenerative ability. Developmental Biology, 2011, 355, 205-214.	0.9	99
85	Over-expression of Grhl2 causes spina bifida in the Axial defects mutant mouse. Human Molecular Genetics, 2011, 20, 1536-1546.	1.4	50
86	The emerging role of epigenetic mechanisms in the etiology of neural tube defects. Epigenetics, 2011, 6, 875-883.	1.3	65
87	The genetic background of the <i>curly tail</i> strain confers susceptibility to folateâ€deficiencyâ€induced exencephaly. Birth Defects Research Part A: Clinical and Molecular Teratology, 2010, 88, 76-83.	1.6	31
88	Postâ€ŧranslational regulation of Crmp in developing and regenerating chick spinal cord. Developmental Neurobiology, 2010, 70, 456-471.	1.5	16
89	Neural tube defects induced by folate deficiency in mutant <i>curly tail</i> (<i>Grhl3</i>) embryos are associated with alteration in folate oneâ€carbon metabolism but are unlikely to result from diminished methylation. Birth Defects Research Part A: Clinical and Molecular Teratology, 2010, 88, 612-618.	1.6	22
90	Genetics and development of neural tube defects. Journal of Pathology, 2010, 220, 217-230.	2.1	391

#	Article	IF	CITATIONS
91	Defining a PARticular Pathway of Neural Tube Closure. Developmental Cell, 2010, 18, 1-2.	3.1	11
92	EphrinA-EphA receptor interactions in mouse spinal neurulation: implications for neural fold fusion. International Journal of Developmental Biology, 2009, 53, 559-568.	0.3	44
93	Apoptosis is not required for mammalian neural tube closure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8233-8238.	3.3	83
94	Genetics of human neural tube defects. Human Molecular Genetics, 2009, 18, R113-R129.	1.4	267
95	Do cells become homeless during neural tube closure?. Cell Cycle, 2009, 8, 2479-2480.	1.3	9
96	Understanding the causes and prevention of neural tube defects: Insights from the <i>splotch</i> mouse model. Birth Defects Research Part A: Clinical and Molecular Teratology, 2009, 85, 322-330.	1.6	38
97	Development of the vertebrate central nervous system: formation of the neural tube. Prenatal Diagnosis, 2009, 29, 303-311.	1.1	158
98	Mutations in Radial Spoke Head Protein Genes RSPH9 and RSPH4A Cause Primary Ciliary Dyskinesia with Central-Microtubular-Pair Abnormalities. American Journal of Human Genetics, 2009, 84, 197-209.	2.6	303
99	Activation of Pax3 target genes is necessary but not sufficient for neurogenesis in the ophthalmic trigeminal placode. Developmental Biology, 2009, 326, 314-326.	0.9	38
100	Grainyhead genes and mammalian neural tube closure. Birth Defects Research Part A: Clinical and Molecular Teratology, 2008, 82, 728-735.	1.6	39
101	Gene-environment interactions in the causation of neural tube defects: folate deficiency increases susceptibility conferred by loss of Pax3 function. Human Molecular Genetics, 2008, 17, 3675-3685.	1.4	99
102	Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development (Cambridge), 2007, 134, 789-799.	1.2	284
103	Increased expression of Grainyhead-like-3 rescues spina bifida in a folate-resistant mouse model. Human Molecular Genetics, 2007, 16, 2640-2646.	1.4	73
104	Neural plate morphogenesis during mouse neurulation is regulated by antagonism of Bmp signalling. Development (Cambridge), 2007, 134, 3203-3211.	1.2	140
105	Proteome changes associated with hippocampal MRI abnormalities in the lithium pilocarpine-induced model of convulsive status epilepticus. Proteomics, 2007, 7, 1336-1344.	1.3	35
106	Excess methionine suppresses the methylation cycle and inhibits neural tube closure in mouse embryos. FEBS Letters, 2006, 580, 2803-2807.	1.3	47
107	Quantitative analysis of s-adenosylmethionine and s-adenosylhomocysteine in neurulation-stage mouse embryos by liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 844, 112-118.	1.2	34
108	Integrity of the methylation cycle is essential for mammalian neural tube closure. Birth Defects Research Part A: Clinical and Molecular Teratology, 2006, 76, 544-552.	1.6	87

#	Article	IF	CITATIONS
109	Abnormal folate metabolism in foetuses affected by neural tube defects. Brain, 2006, 130, 1043-1049.	3.7	48
110	In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis, 2005, 43, 129-135.	0.8	218
111	Expression pattern ofglypican-4 suggests multiple roles during mouse development. Developmental Dynamics, 2005, 233, 1013-1017.	0.8	37
112	Zic4, a zinc-finger transcription factor, is expressed in the developing mouse nervous system. Developmental Dynamics, 2005, 233, 1110-1115.	0.8	43
113	Mouse models of neural tube defects: Investigating preventive mechanisms. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2005, 135C, 31-41.	0.7	101
114	Homocysteine is embryotoxic but does not cause neural tube defects in mouse embryos. Anatomy and Embryology, 2003, 206, 185-191.	1.5	56
115	Planar cell polarity genes and neural tube closure. Birth Defects Research Part C: Embryo Today Reviews, 2003, 69, 318-324.	3.6	68
116	The genetic basis of mammalian neurulation. Nature Reviews Genetics, 2003, 4, 784-793.	7.7	608
117	Dishevelled: linking convergent extension with neural tube closure. Trends in Neurosciences, 2003, 26, 453-455.	4.2	56
118	Specific isoforms of protein kinase C are essential for prevention of folate-resistant neural tube defects by inositol. Human Molecular Genetics, 2003, 13, 7-14.	1.4	53
119	Differential Protein Expression at the Stage of Neural Tube Closure in the Mouse Embryo. Journal of Biological Chemistry, 2002, 277, 41645-41651.	1.6	32
120	Folic acid prevents exencephaly in Cited2 deficient mice. Human Molecular Genetics, 2002, 11, 283-293.	1.4	145
121	D-chiro-inositol is more effective than myo-inositol in preventing folate-resistant mouse neural tube defects. Human Reproduction, 2002, 17, 2451-2458.	0.4	52
122	Retinal Pathology and Function in a Cln3 Knockout Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis (Batten Disease). Molecular and Cellular Neurosciences, 2002, 19, 515-527.	1.0	58
123	Expression of MUL, a gene encoding a novel RBCC family ring-finger protein, in human and mouse embryogenesis. Mechanisms of Development, 2001, 108, 221-225.	1.7	17
124	High resolution MRI reveals global changes in brains of Cln3 mutant mice. European Journal of Paediatric Neurology, 2001, 5, 103-107.	0.7	13
125	Preventive Management of Children with Congenital Anomalies and Syndromes. European Journal of Paediatric Neurology, 2001, 5, 89.	0.7	1
126	Cardiovascular Defects Associated With Abnormalities in Midline Development in the <i>Loop-tail</i> Mouse Mutant. Circulation Research, 2001, 89, 6-12.	2.0	72

#	Article	IF	CITATIONS
127	Neural tube defects : Prevention by folic acid and other vitamins. Indian Journal of Pediatrics, 2000, 67, 915-921.	0.3	12
128	Developmental expression of palmitoyl protein thioesterase in normal mice. Developmental Brain Research, 1999, 118, 1-11.	2.1	45
129	A Murine Model for Juvenile NCL: Gene Targeting of MouseCln3. Molecular Genetics and Metabolism, 1999, 66, 309-313.	0.5	31
130	The Molecular Basis of GROD-Storing Neuronal Ceroid Lipofuscinoses in Scotland. Molecular Genetics and Metabolism, 1999, 66, 245-247.	0.5	10
131	Targeted Disruption of the Cln3 Gene Provides a Mouse Model for Batten Disease. Neurobiology of Disease, 1999, 6, 321-334.	2.1	180
132	Embryonic mechanisms underlying the prevention of neural tube defects by vitamins. Mental Retardation and Developmental Disabilities Research Reviews, 1998, 4, 264-268.	3.5	5
133	Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (Lp) mouse: a model of severe neural tube defects. Mechanisms of Development, 1998, 73, 59-72.	1.7	143
134	Inositol prevents folate-resistant neural tube defects in the mouse. Nature Medicine, 1997, 3, 60-66.	15.2	204