Hannah L Buckley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4392361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Critical Review of Twenty Years' Use of the Resourceâ€Ratio Theory. American Naturalist, 2005, 165, 439-448.	2.1	209
2	Bacteria as Emerging Indicators of Soil Condition. Applied and Environmental Microbiology, 2017, 83, .	3.1	202
3	Climate and coastal dune vegetation: disturbance, recovery, and succession. Plant Ecology, 2010, 206, 97-104.	1.6	152
4	Towards robust and repeatable sampling methods in <scp>eDNA</scp> â€based studies. Molecular Ecology Resources, 2018, 18, 940-952.	4.8	137
5	Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome, 2020, 8, 79.	11.1	137
6	Fine-scale spatial patterns in bacterial community composition and function within freshwater ponds. ISME Journal, 2014, 8, 1715-1726.	9.8	110
7	Increased stem density and competition may diminish the positive effects of warming at alpine treeline. Ecology, 2016, 97, 1668-1679.	3.2	93
8	Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. Journal of Applied Ecology, 2015, 52, 1274-1282.	4.0	84
9	Reverse latitudinal trends in species richness of pitcher-plant food webs. Ecology Letters, 2003, 6, 825-829.	6.4	82
10	Agricultural intensification drives landscapeâ€context effects on host–parasitoid interactions in agroecosystems. Journal of Applied Ecology, 2012, 49, 706-714.	4.0	77
11	The biogeography of stream bacteria. Global Ecology and Biogeography, 2013, 22, 544-554.	5.8	67
12	Optimal extraction methods for the simultaneous analysis of <scp>DNA</scp> from diverse organisms and sample types. Molecular Ecology Resources, 2018, 18, 557-569.	4.8	65
13	Morphological variation in <i>Sarracenia purpurea</i> (Sarraceniaceae): geographic, environmental, and taxonomic correlates. American Journal of Botany, 2004, 91, 1930-1935.	1.7	62
14	Understanding the role of species dynamics in abundance–occupancy relationships. Journal of Ecology, 2010, 98, 645-658.	4.0	60
15	Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. , 2018, , .		58
16	Implications of floral resources for predation by an omnivorous lacewing. Basic and Applied Ecology, 2008, 9, 172-181.	2.7	54
17	Geographic variation in network structure of a nearctic aquatic food web. Global Ecology and Biogeography, 2012, 21, 579-591.	5.8	52
18	A global framework for linking alpineâ€ŧreeline ecotone patterns to underlying processes. Ecography, 2021, 44, 265-292.	4.5	52

#	Article	IF	CITATIONS
19	Testing a global standard for quantifying species recovery and assessing conservation impact. Conservation Biology, 2021, 35, 1833-1849.	4.7	51
20	URban Biotopes of Aotearoa New Zealand (URBANZ) II: Floristics, biodiversity and conservation values of urban residential and public woodlands, Christchurch. Urban Forestry and Urban Greening, 2009, 8, 149-162.	5.3	49
21	URban Biotopes of Aotearoa New Zealand (URBANZ) (I): composition and diversity of temperate urban lawns in Christchurch. Urban Ecosystems, 2009, 12, 233-248.	2.4	48
22	Microbial assemblages and bioindicators as proxies for ecosystem health status: potential and limitations. Applied Microbiology and Biotechnology, 2019, 103, 6407-6421.	3.6	45
23	Floral diversity, parasitoids and hyperparasitoids – A laboratory approach. Basic and Applied Ecology, 2008, 9, 588-597.	2.7	44
24	Both species sorting and neutral processes drive assembly of bacterial communities in aquatic microcosms. FEMS Microbiology Ecology, 2013, 86, 288-302.	2.7	44
25	Adding floral nectar resources to improve biological control: Potential pitfalls of the fourth trophic level. Basic and Applied Ecology, 2009, 10, 554-562.	2.7	42
26	A Systematic Review of Sources of Variability and Uncertainty in eDNA Data for Environmental Monitoring. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	42
27	Bacterial and fungal communities respond differently to varying tillage depth in agricultural soils. PeerJ, 2017, 5, e3930.	2.0	42
28	Shoot flammability is decoupled from leaf flammability, but controlled by leaf functional traits. Journal of Ecology, 2020, 108, 641-653.	4.0	39
29	Predicting foodâ€web structure with metacommunity models. Oikos, 2013, 122, 492-506.	2.7	37
30	Multi-scale phylogenetic structure in coastal dune plant communities across the globe. Journal of Plant Ecology, 2014, 7, 101-114.	2.3	37
31	Searching behavior of an aphid parasitoid and its hyperparasitoid with and without floral nectar. Biological Control, 2011, 57, 79-84.	3.0	31
32	Connecting through space and time: catchmentâ€scale distributions of bacteria in soil, stream water and sediment. Environmental Microbiology, 2020, 22, 1000-1010.	3.8	31
33	Shoot flammability of vascular plants is phylogenetically conserved and related to habitat fire-proneness and growth form. Nature Plants, 2020, 6, 355-359.	9.3	29
34	Aspect has a greater impact on alpine soil bacterial community structure than elevation. FEMS Microbiology Ecology, 2017, 93, fiw253.	2.7	28
35	Communityâ€level flammability declines over 25Âyears of plant invasion in grasslands. Journal of Ecology, 2018, 106, 1582-1594.	4.0	28
36	Small-scale species richness in forest canopy gaps: the role of niche limitation versus the size of the species pool. Journal of Vegetation Science, 1998, 9, 455-460.	2.2	26

#	Article	IF	CITATIONS
37	Landscape variation influences trophic cascades in dengue vector food webs. Science Advances, 2018, 4, eaap9534.	10.3	26
38	Using niche conservatism information to prioritize hotspots of invasion by nonâ€native freshwater invertebrates in New Zealand. Diversity and Distributions, 2018, 24, 1802-1815.	4.1	26
39	Following Rapoport's Rule: the geographic range and genome size of bacterial taxa decline at warmer latitudes. Environmental Microbiology, 2017, 19, 3152-3162.	3.8	25
40	When a foundation crumbles: forecasting forest dynamics following the decline of the foundation species <i>Tsuga canadensis</i> . Ecosphere, 2017, 8, e01893.	2.2	23
41	Interacting effects of management and environmental variability at multiple scales on invasive species distributions. Journal of Applied Ecology, 2009, 46, 1210-1218.	4.0	22
42	Species Diversity Associated with Foundation Species in Temperate and Tropical Forests. Forests, 2019, 10, 128.	2.1	21
43	Intractable: species in New Zealand that continue to decline despite conservation efforts. Journal of the Royal Society of New Zealand, 2019, 49, 301-319.	1.9	19
44	Disentangling native and alien plant diversity in coastal sand dune ecosystems worldwide. Journal of Vegetation Science, 2021, 32, .	2.2	19
45	Invasion patterns across multiple scales by Hieracium species over 25 years in tussock grasslands of New Zealand's South Island. Austral Ecology, 2011, 36, 559-570.	1.5	18
46	Isolation affects tree-scale epiphytic lichen community structure on New Zealand mountain beech trees. Journal of Vegetation Science, 2011, 22, 1062-1071.	2.2	18
47	Using codispersion analysis to characterize spatial patterns in species coâ€occurrences. Ecology, 2016, 97, 32-39.	3.2	17
48	Isolation and co-culturing of symbionts in the genus Usnea. Symbiosis, 2015, 66, 123-132.	2.3	16
49	Twenty-five years of plant community dynamics and invasion in New Zealand tussock grasslands. Austral Ecology, 2013, 38, 688-699.	1.5	15
50	Using codispersion analysis to quantify and understand spatial patterns in species–environment relationships. New Phytologist, 2016, 211, 735-749.	7.3	15
51	Perspectives on the Impact of Sampling Design and Intensity on Soil Microbial Diversity Estimates. Frontiers in Microbiology, 2019, 10, 1820.	3.5	14
52	The roles of nonâ€production vegetation in agroecosystems: A research framework for filling process knowledge gaps in a socialâ€ecological context. People and Nature, 2020, 2, 292-304.	3.7	14
53	Container-breeding mosquitoes and predator community dynamics along an urban-forest gradient: The effects of habitat type and isolation. Basic and Applied Ecology, 2014, 15, 486-495.	2.7	13
54	Small-scale patterns in community structure of Sarracenia purpurea inquilines. Community Ecology, 2004, 5, 181-188.	0.9	12

#	Article	IF	CITATIONS
55	Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity. PeerJ, 2014, 2, e573.	2.0	12
56	Predation on Mosquitoes by Common Southeast Asian House-Dwelling Jumping Spiders (Salticidae). Arachnology, 2014, 16, 122-127.	0.4	12
57	Predation rates of mixed instar Odonata naiads feeding on Aedes aegypti and Armigeres moultoni (Diptera: Culicidae) larvae. Journal of Asia-Pacific Entomology, 2015, 18, 1-8.	0.9	12
58	Measuring change in biological communities: multivariate analysis approaches for temporal datasets with low sample size. PeerJ, 2021, 9, e11096.	2.0	12
59	Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand's southern beech treelines. PeerJ, 2015, 3, e1334.	2.0	12
60	How many samples? Soil variability affects confidence in the use of common agroecosystem soil indicators. Ecological Indicators, 2019, 102, 401-409.	6.3	11
61	Large-scale tree planting initiatives as an opportunity to derive carbon and biodiversity co-benefits: a case study from Aotearoa New Zealand. New Forests, 2022, 53, 589-602.	1.7	11
62	Local―to continentalâ€scale variation in the richness and composition of an aquatic food web. Global Ecology and Biogeography, 2010, 19, 711-723.	5.8	10
63	The founder space race: a response to Waters et al Trends in Ecology and Evolution, 2013, 28, 189-190.	8.7	10
64	Changes in the analysis of temporal community dynamics data: a 29-year literature review. PeerJ, 2021, 9, e11250.	2.0	10
65	Achieving win-win outcomes for pastoral farming and biodiversity conservation in New Zealand. New Zealand Journal of Ecology, 2020, 44, .	1.1	10
66	From pine to pasture: land use history has long-term impacts on soil bacterial community composition and functional potential. FEMS Microbiology Ecology, 2020, 96, .	2.7	9
67	Evaluating Support for the Resourceâ€Ratio Hypothesis: A Reply to Wilson et al American Naturalist, 2007, 169, 707-708.	2.1	8
68	Restoring mature-phase forest tree species through enrichment planting in New Zealand's lowland landscapes. New Zealand Journal of Ecology, 2020, 44, .	1.1	8
69	Flame Temperatures Saturate with Increasing Dead Material in Ulex europaeus, but Flame Duration, Fuel Consumption and Overall Flammability Continue to Increase. Fire, 2019, 2, 6.	2.8	7
70	Interactions between landscape structure and bird mobility traits affect the connectivity of agroecosystem networks. Ecological Indicators, 2021, 129, 107962.	6.3	7
71	Livestock exclusion reduces the spillover effects of pastoral agriculture on soil bacterial communities in adjacent forest fragments. Environmental Microbiology, 2021, 23, 2919-2936.	3.8	6
72	Conservation of forest biodiversity and ecosystem properties in a pastoral landscape of the Ecuadorian Andes. Agroforestry Systems, 2014, 88, 369-381.	2.0	5

#	Article	IF	CITATIONS
73	Density-dependent allometric functional response models. Ecological Modelling, 2015, 303, 12-18.	2.5	5
74	High light-induced photoinhibition is not limiting seedling establishment at abrupt treeline ecotones in New Zealand. Tree Physiology, 2021, 41, 2034-2045.	3.1	5
75	Patterns of range size in New Zealand ferns and lycophytes. , 2018, 42, .		5
76	Directional changes over time in the species composition of tropical vascular epiphyte assemblages. Journal of Ecology, 2022, 110, 553-568.	4.0	5
77	Sensitivity of Codispersion to Noise and Error in Ecological and Environmental Data. Forests, 2018, 9, 679.	2.1	4
78	Hypothesis: Do invasive house geckos exacerbate dengue fever epidemics?. Biological Invasions, 2019, 21, 3533-3543.	2.4	4
79	LOTVS: A global collection of permanent vegetation plots. Journal of Vegetation Science, 2022, 33, .	2.2	4
80	Land-use history impacts spatial patterns and composition of woody plant species across a 35-hectare temperate forest plot. PeerJ, 2022, 10, e12693.	2.0	4
81	Microhabitat variation inUsneabiomass on mountain beech in Nina Valley, New Zealand. New Zealand Journal of Botany, 2013, 51, 328-333.	1.1	3
82	Detecting Ecological Patterns Along Environmental Gradients: Alpine Treeline Ecotones. Chance, 2016, 29, 10-15.	0.2	3
83	Environmental DNA sampling detects between-habitat variation in soil arthropod communities, but is a poor indicator of fine-scale spatial and seasonal variation. Ecological Indicators, 2022, 140, 109040.	6.3	3
84	Measuring Homeâ€Range Changes Following Density Reduction of Australian Brushtail Possum. Journal of Wildlife Management, 2020, 84, 185-192.	1.8	2
85	Temporal variation in soil bacterial communities can be confounded with spatial variation. FEMS Microbiology Ecology, 2020, 96, .	2.7	2
86	Managing and protecting native biodiversity on-farm – what do sheep and beef farmers think?. New Zealand Journal of Ecology, 0, , .	1.1	2
87	The significance of sheep and beef farms to conservation of native vegetation in New Zealand. New Zealand Journal of Ecology, 0, , .	1.1	2
88	Factors affecting home range size of feral cats: a meta-analysis. New Zealand Journal of Ecology, 0, , .	1.1	2
89	Grassland plant and invertebrate species richness increases from mowing are mediated by impacts on soil chemistry. Basic and Applied Ecology, 2022, 63, 152-163.	2.7	2
90	Patterns of host damage by the cabbage tree monophageEpiphryne verriculataFeld (Lepidoptera:) Tj ETQq0 0 0) rgBT /Ove 0.3	rlock 10 Tf 50 1

90

77-88.

#	Article	IF	CITATIONS
91	Functional traits of common New Zealand foredune species at New Brighton, Canterbury. New Zealand Journal of Botany, 2014, 52, 460-466.	1.1	1
92	Identifying optimal bioinformatics protocols for aerosol microbial community data. PeerJ, 2021, 9, e12065.	2.0	1
93	Isolation of Polymorphic Microsatellite Loci in the New Zealand Endemic Sand-Binder,Ficinia spiralis(Cyperaceae). Applications in Plant Sciences, 2017, 5, 1700039.	2.1	0
94	The New Zealand Beef and Sheep Sector's Contribution to Biodiversity and Carbon Sequestration. Proceedings (mdpi), 2019, 8, 48.	0.2	0
95	Resource competition, not facilitation, structures gravel beach plant communities. Journal of Vegetation Science, 2021, 32, e13099.	2.2	0
96	Assessing the potential of invertebrate natural enemies of insect pests inhabiting <i>Miscanthus</i> x <i>giganteus</i> shelterbelts in pasture. New Zealand Journal of Agricultural Research, 2023, 66, 259-269.	1.6	0