Emily Flashman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4392035/publications.pdf Version: 2024-02-01

EMILY FLASHMAN

#	Article	IF	CITATIONS
1	Emerging roles for thiol dioxygenases as oxygen sensors. FEBS Journal, 2022, 289, 5426-5439.	4.7	10
2	Targeting plant cysteine oxidase activity for improved submergence tolerance. Plant Journal, 2022, 109, 779-788.	5.7	9
3	Hypoxia and hypoxia mimetics differentially modulate histone post-translational modifications. Epigenetics, 2021, 16, 14-27.	2.7	12
4	Measuring ROS and redox markers in plant cells. RSC Chemical Biology, 2021, 2, 1384-1401.	4.1	10
5	Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science, 2020, 370, .	12.6	64
6	Structures of <i>Arabidopsis thaliana</i> oxygen-sensing plant cysteine oxidases 4 and 5 enable targeted manipulation of their activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23140-23147.	7.1	31
7	Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants. Science, 2019, 365, 65-69.	12.6	146
8	Zinc Excess Induces a Hypoxia-Like Response by Inhibiting Cysteine Oxidases in Poplar Roots. Plant Physiology, 2019, 180, 1614-1628.	4.8	19
9	Lysineâ€241 Has a Role in Coupling 2OG Turnover with Substrate Oxidation During KDM4â€Catalysed Histone Demethylation. ChemBioChem, 2018, 19, 917-921.	2.6	7
10	YcfDRM is a thermophilic oxygen-dependent ribosomal protein uL16 oxygenase. Extremophiles, 2018, 22, 553-562.	2.3	6
11	Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATIONÂ2. Nature Communications, 2018, 9, 5438.	12.8	81
12	The plant cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors. Journal of Biological Chemistry, 2018, 293, 11786-11795.	3.4	82
13	Ribonucleotide Reductase Requires Subunit Switching in Hypoxia to Maintain DNA Replication. Molecular Cell, 2017, 66, 206-220.e9.	9.7	71
14	Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nature Communications, 2017, 8, 14690.	12.8	171
15	The Activity of JmjC Histone Lysine Demethylase KDM4A is Highly Sensitive to Oxygen Concentrations. ACS Chemical Biology, 2017, 12, 1011-1019.	3.4	70
16	Studies on the Interaction of the Histone Demethylase KDM5B with Tricarboxylic Acid Cycle Intermediates. Journal of Molecular Biology, 2017, 429, 2895-2906.	4.2	29
17	Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chemical Science, 2017, 8, 7651-7668.	7.4	174
18	Catalytic strategies of the non-heme iron dependent oxygenases and their roles in plant biology. Current Opinion in Chemical Biology, 2016, 31, 126-135.	6.1	64

EMILY FLASHMAN

#	Article	IF	CITATIONS
19	Biochemical characterization of New Delhi metallo-β-lactamase variants reveals differences in protein stability. Journal of Antimicrobial Chemotherapy, 2015, 70, 463-469.	3.0	57
20	Epigenetic regulation by histone demethylases in hypoxia. Epigenomics, 2015, 7, 791-811.	2.1	124
21	Kinetic Investigations of the Role of Factor Inhibiting Hypoxia-inducible Factor (FIH) as an Oxygen Sensor. Journal of Biological Chemistry, 2015, 290, 19726-19742.	3.4	69
22	Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase. Biochemistry, 2015, 54, 6093-6105.	2.5	19
23	Studying the active-site loop movement of the São Paolo metallo-β-lactamase-1. Chemical Science, 2015, 6, 956-963.	7.4	36
24	Investigating the contribution of the active site environment to the slow reaction of hypoxia-inducible factor prolyl hydroxylase domain 2 with oxygen. Biochemical Journal, 2014, 463, 363-372.	3.7	41
25	Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nature Communications, 2014, 5, 3423.	12.8	69
26	Studies on Deacetoxycephalosporin C Synthase Support a Consensus Mechanism for 2-Oxoglutarate Dependent Oxygenases. Biochemistry, 2014, 53, 2483-2493.	2.5	43
27	Investigations on the oxygen dependence of a 2-oxoglutarate histone demethylase. Biochemical Journal, 2013, 449, 491-496.	3.7	53
28	Studies on the Reaction of Nitric Oxide with the Hypoxia-Inducible Factor Prolyl Hydroxylase Domain 2 (EGLN1). Journal of Molecular Biology, 2011, 410, 268-279.	4.2	54
29	Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and) Tj ETQq1 1 135-142.	0.784314 3.7	rgBT /Overlo 118
30	Evidence for the slow reaction of hypoxiaâ€inducible factor prolyl hydroxylase 2 with oxygen. FEBS Journal, 2010, 277, 4089-4099.	4.7	75
31	Structural Basis for Binding of Hypoxia-Inducible Factor to the Oxygen-Sensing Prolyl Hydroxylases. Structure, 2009, 17, 981-989.	3.3	205
32	Evidence for a Stereoelectronic Effect in Human Oxygen Sensing. Angewandte Chemie - International Edition, 2009, 48, 1784-1787.	13.8	58
33	Kinetic Rationale for Selectivity toward N- and C-terminal Oxygen-dependent Degradation Domain Substrates Mediated by a Loop Region of Hypoxia-Inducible Factor Prolyl Hydroxylases. Journal of Biological Chemistry, 2008, 283, 3808-3815.	3.4	72
34	Oxygenases for oxygen sensing. Pure and Applied Chemistry, 2008, 80, 1837-1847.	1.9	2
35	Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochemical Journal, 2007, 401, 227-234.	3.7	196
36	Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9814-9819.	7.1	310

#	Article	IF	CITATIONS
37	Hypoxia-inducible factor prolyl hydroxylase 2 has a high affinity for ferrous iron and 2-oxoglutarate. Molecular BioSystems, 2005, 1, 321.	2.9	98