
Emily Flashman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4392035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9814-9819.	3.3	310
2	Structural Basis for Binding of Hypoxia-Inducible Factor to the Oxygen-Sensing Prolyl Hydroxylases. Structure, 2009, 17, 981-989.	1.6	205
3	Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochemical Journal, 2007, 401, 227-234.	1.7	196
4	Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chemical Science, 2017, 8, 7651-7668.	3.7	174
5	Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nature Communications, 2017, 8, 14690.	5.8	171
6	Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants. Science, 2019, 365, 65-69.	6.0	146
7	Epigenetic regulation by histone demethylases in hypoxia. Epigenomics, 2015, 7, 791-811.	1.0	124
8	Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and) Tj ETQq0 0 0 135-142.	rgBT /Ove 1.7	erlock 10 Tf 118
9	Hypoxia-inducible factor prolyl hydroxylase 2 has a high affinity for ferrous iron and 2-oxoglutarate. Molecular BioSystems, 2005, 1, 321.	2.9	98
10	The plant cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors. Journal of Biological Chemistry, 2018, 293, 11786-11795.	1.6	82
11	Oxygen-dependent proteolysis regulates the stability of angiosperm polycomb repressive complex 2 subunit VERNALIZATIONÂ2. Nature Communications, 2018, 9, 5438.	5.8	81
12	Evidence for the slow reaction of hypoxiaâ€inducible factor prolyl hydroxylase 2 with oxygen. FEBS Journal, 2010, 277, 4089-4099.	2.2	75
13	Kinetic Rationale for Selectivity toward N- and C-terminal Oxygen-dependent Degradation Domain Substrates Mediated by a Loop Region of Hypoxia-Inducible Factor Prolyl Hydroxylases. Journal of Biological Chemistry, 2008, 283, 3808-3815.	1.6	72
14	Ribonucleotide Reductase Requires Subunit Switching in Hypoxia to Maintain DNA Replication. Molecular Cell, 2017, 66, 206-220.e9.	4.5	71
15	The Activity of JmjC Histone Lysine Demethylase KDM4A is Highly Sensitive to Oxygen Concentrations. ACS Chemical Biology, 2017, 12, 1011-1019.	1.6	70
16	Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nature Communications, 2014, 5, 3423.	5.8	69
17	Kinetic Investigations of the Role of Factor Inhibiting Hypoxia-inducible Factor (FIH) as an Oxygen Sensor. Journal of Biological Chemistry, 2015, 290, 19726-19742.	1.6	69
18	Catalytic strategies of the non-heme iron dependent oxygenases and their roles in plant biology. Current Opinion in Chemical Biology, 2016, 31, 126-135.	2.8	64

EMILY FLASHMAN

#	Article	IF	CITATIONS
19	Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science, 2020, 370, .	6.0	64
20	Evidence for a Stereoelectronic Effect in Human Oxygen Sensing. Angewandte Chemie - International Edition, 2009, 48, 1784-1787.	7.2	58
21	Biochemical characterization of New Delhi metallo-β-lactamase variants reveals differences in protein stability. Journal of Antimicrobial Chemotherapy, 2015, 70, 463-469.	1.3	57
22	Studies on the Reaction of Nitric Oxide with the Hypoxia-Inducible Factor Prolyl Hydroxylase Domain 2 (EGLN1). Journal of Molecular Biology, 2011, 410, 268-279.	2.0	54
23	Investigations on the oxygen dependence of a 2-oxoglutarate histone demethylase. Biochemical Journal, 2013, 449, 491-496.	1.7	53
24	Studies on Deacetoxycephalosporin C Synthase Support a Consensus Mechanism for 2-Oxoglutarate Dependent Oxygenases. Biochemistry, 2014, 53, 2483-2493.	1.2	43
25	Investigating the contribution of the active site environment to the slow reaction of hypoxia-inducible factor prolyl hydroxylase domain 2 with oxygen. Biochemical Journal, 2014, 463, 363-372.	1.7	41
26	Studying the active-site loop movement of the São Paolo metallo-β-lactamase-1. Chemical Science, 2015, 6, 956-963.	3.7	36
27	Structures of <i>Arabidopsis thaliana</i> oxygen-sensing plant cysteine oxidases 4 and 5 enable targeted manipulation of their activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23140-23147.	3.3	31
28	Studies on the Interaction of the Histone Demethylase KDM5B with Tricarboxylic Acid Cycle Intermediates. Journal of Molecular Biology, 2017, 429, 2895-2906.	2.0	29
29	Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase. Biochemistry, 2015, 54, 6093-6105.	1.2	19
30	Zinc Excess Induces a Hypoxia-Like Response by Inhibiting Cysteine Oxidases in Poplar Roots. Plant Physiology, 2019, 180, 1614-1628.	2.3	19
31	Hypoxia and hypoxia mimetics differentially modulate histone post-translational modifications. Epigenetics, 2021, 16, 14-27.	1.3	12
32	Measuring ROS and redox markers in plant cells. RSC Chemical Biology, 2021, 2, 1384-1401.	2.0	10
33	Emerging roles for thiol dioxygenases as oxygen sensors. FEBS Journal, 2022, 289, 5426-5439.	2.2	10
34	Targeting plant cysteine oxidase activity for improved submergence tolerance. Plant Journal, 2022, 109, 779-788.	2.8	9
35	Lysineâ€241 Has a Role in Coupling 2OG Turnover with Substrate Oxidation During KDM4â€Catalysed Histone Demethylation. ChemBioChem, 2018, 19, 917-921.	1.3	7
36	YcfDRM is a thermophilic oxygen-dependent ribosomal protein uL16 oxygenase. Extremophiles, 2018, 22, 553-562.	0.9	6

#	Article	IF	CITATIONS
37	Oxygenases for oxygen sensing. Pure and Applied Chemistry, 2008, 80, 1837-1847.	0.9	2