Eric Denarier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4392019/publications.pdf

Version: 2024-02-01

257450 302126 1,725 51 24 39 h-index citations g-index papers 58 58 58 2010 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Developmental defects in Huntington's disease show that axonal growth and microtubule reorganization require NUMA1. Neuron, 2022, 110, 36-50.e5.	8.1	21
2	Alix is required for activity-dependent bulk endocytosis at brain synapses. PLoS Biology, 2022, 20, e3001659.	5. 6	4
3	Pyr1-Mediated Pharmacological Inhibition of LIM Kinase Restores Synaptic Plasticity and Normal Behavior in a Mouse Model of Schizophrenia. Frontiers in Pharmacology, 2021, 12, 627995.	3.5	8
4	Beyond Neuronal Microtubule Stabilization: MAP6 and CRMPS, Two Converging Stories. Frontiers in Molecular Neuroscience, 2021, 14, 665693.	2.9	19
5	CRMP4-mediated fornix development involves Semaphorin-3E signaling pathway. ELife, 2021, 10, .	6.0	2
6	AutoNeuriteJ: An ImageJ plugin for measurement and classification of neuritic extensions. PLoS ONE, 2020, 15, e0234529.	2.5	15
7	Two Antagonistic Microtubule Targeting Drugs Act Synergistically to Kill Cancer Cells. Cancers, 2020, 12, 2196.	3.7	7
8	MAP6 is an intraluminal protein that induces neuronal microtubules to coil. Science Advances, 2020, 6, eaaz4344.	10.3	56
9	Presynaptic APP levels and synaptic homeostasis are regulated by Akt phosphorylation of huntingtin. ELife, 2020, 9, .	6.0	21
10	AutoNeuriteJ: An ImageJ plugin for measurement and classification of neuritic extensions., 2020, 15, e0234529.		0
11	AutoNeuriteJ: An ImageJ plugin for measurement and classification of neuritic extensions. , 2020, 15, e0234529.		O
12	AutoNeuriteJ: An ImageJ plugin for measurement and classification of neuritic extensions. , 2020, 15, e0234529.		0
13	AutoNeuriteJ: An ImageJ plugin for measurement and classification of neuritic extensions. , 2020, 15, e0234529.		O
14	Defective tubulin detyrosination causes structural brain abnormalities with cognitive deficiency in humans and mice. Human Molecular Genetics, 2019, 28, 3391-3405.	2.9	43
15	A neurodevelopmental TUBB2B \hat{i}^2 -tubulin mutation impairs Bim1 (yeast EB1)-dependent spindle positioning. Biology Open, 2019, 8, .	1.2	6
16	A key function for microtubule-associated-protein 6 in activity-dependent stabilisation of actin filaments in dendritic spines. Nature Communications, 2018, 9, 3775.	12.8	30
17	Short- and long-term efficacy of electroconvulsive stimulation in animal models of depression: The essential role of neuronal survival. Brain Stimulation, 2018, 11, 1336-1347.	1.6	38
18	Phase from defocus. , 2018, , .		0

#	Article	IF	Citations
19	TIRF assays for real-time observation of microtubules and actin coassembly: Deciphering tau effects on microtubule/actin interplay. Methods in Cell Biology, 2017, 141, 199-214.	1.1	4
20	3D imaging of the brain morphology and connectivity defects in a model of psychiatric disorders: MAP6-KO mice. Scientific Reports, 2017, 7, 10308.	3.3	25
21	Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation. Science, 2017, 358, 1448-1453.	12.6	198
22	MAP6 interacts with Tctex1 and Ca _v 2.2/Nâ€type calcium channels to regulate calcium signalling in neurons. European Journal of Neuroscience, 2017, 46, 2754-2767.	2.6	5
23	A TIRF microscopy assay to decode how tau regulates EB's tracking at microtubule ends. Methods in Cell Biology, 2017, 141, 179-197.	1.1	14
24	A role for the microtubule +end protein Bik1 (CLIP170) and the Rho1 GTPase in Snc1 trafficking. Journal of Cell Science, 2016, 129, 3332-41.	2.0	8
25	Tau antagonizes end-binding protein tracking at microtubule ends through a phosphorylation-dependent mechanism. Molecular Biology of the Cell, 2016, 27, 2924-2934.	2.1	60
26	Functional organization of an <i>Mbp</i> enhancer exposes striking transcriptional regulatory diversity within myelinating glia. Glia, 2016, 64, 175-194.	4.9	6
27	Evidence for new C-terminally truncated variants of \hat{l}_{\pm} - and \hat{l}^2 -tubulins. Molecular Biology of the Cell, 2016, 27, 640-653.	2.1	43
28	Tau co-organizes dynamic microtubule and actin networks. Scientific Reports, 2015, 5, 9964.	3.3	149
29	Microtubule-associated protein 6 mediates neuronal connectivity through Semaphorin 3E-dependent signalling for axonal growth. Nature Communications, 2015, 6, 7246.	12.8	57
30	Non-Microtubular Localizations of Microtubule-Associated Protein 6 (MAP6). PLoS ONE, 2014, 9, e114905.	2.5	10
31	Exon Skipping as a Therapeutic Strategy Applied to an <i>RYR1</i> Mutation with Pseudo-Exon Inclusion Causing a Severe Core Myopathy. Human Gene Therapy, 2013, 24, 702-713.	2.7	27
32	MAP6-F Is a Temperature Sensor That Directly Binds to and Protects Microtubules from Cold-induced Depolymerization. Journal of Biological Chemistry, 2012, 287, 35127-35138.	3.4	41
33	Regulatory modules function in a non-autonomous manner to control transcription of the mbp gene. Nucleic Acids Research, 2011, 39, 2548-2558.	14.5	13
34	Towards resolving the transcription factor network controlling myelin gene expression. Nucleic Acids Research, 2011, 39, 7974-7991.	14.5	22
35	Mutation of Ser 172 in Yeast \hat{I}^2 Tubulin Induces Defects in Microtubule Dynamics and Cell Division. PLoS ONE, 2010, 5, e13553.	2.5	16
36	STOP-like Protein 21 Is a Novel Member of the STOP Family, Revealing a Golgi Localization of STOP Proteins. Journal of Biological Chemistry, 2006, 281, 28387-28396.	3.4	28

#	Article	IF	Citations
37	Functional Organization of a Schwann Cell Enhancer. Journal of Neuroscience, 2005, 25, 11210-11217.	3.6	39
38	Suppression of nuclear oscillations in Saccharomyces cerevisiae expressing Glu tubulin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5577-5582.	7.1	73
39	Calcium-independent cytoskeleton disassembly induced by BAPTA. FEBS Journal, 2004, 271, 3255-3264.	0.2	42
40	Overlap of promoter and coding sequences in the mouse STOP gene (Mtap6) \hat{a}^{-} †. Genomics, 2003, 81, 623-627.	2.9	14
41	The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes and Development, 2002, 16, 2350-2364.	5.9	149
42	Interaction of STOP with neuronal tubulin is independent of polyglutamylation. Biochemical and Biophysical Research Communications, 2002, 297, 787-793.	2.1	10
43	Identification of Novel Bifunctional Calmodulin-binding and Microtubule-stabilizing Motifs in STOP Proteins. Journal of Biological Chemistry, 2001, 276, 30904-30913.	3.4	37
44	Assignment <footref rid="foot01">¹</footref> of the STOP gene (MAP6) to human chromosome bands 6p12â†'p11 by fluorescence in situ hybridization. Cytogenetic and Genome Research, 1999, 86, 25-25.	1.1	0
45	Genomic Structure and Chromosomal Mapping of the Mouse STOP Gene (Mtap6). Biochemical and Biophysical Research Communications, 1998, 243, 791-796.	2.1	29
46	STOP Proteins are Responsible for the High Degree of Microtubule Stabilization Observed in Neuronal Cells. Journal of Cell Biology, 1998, 142, 167-179.	5.2	111
47	Nonneuronal isoforms of STOP protein are responsible for microtubule cold stability in mammalian fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6055-6060.	7.1	57
48	PCR Cloning and Sequence of the Murine GPIIb Gene Promoter. Biochemical and Biophysical Research Communications, 1993, 195, 1360-1364.	2.1	25
49	GPIIb and GPIIIa amino acid sequences deduced from human megakaryocyte cDNAs. Molecular Biology Reports, 1990, 14, 27-33.	2.3	37
50	cDNA clones for human platelet GPIIb corresponding to mRNA from megakaryocytes and HEL cells. Evidence for an extensive homology to other Arg-Gly-Asp adhesion receptors. FEBS Journal, 1988, 171, 87-93.	0.2	31
51	Isolation of the human platelet glycoprotein IIb gene and characterization of the 5′ flanking region. Biochemical and Biophysical Research Communications, 1988, 156, 595-601.	2.1	67