
Meysam Ahangarkani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4391803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-situ formation of tungsten nano-particles by oxidation-reduction mechanism-New approach in sintering activating by means of oxide nanostructures. Materials Letters, 2020, 261, 127128.	2.6	6
2	Evolution of microstructure and wear-friction behavior of W-30 wt.% Cu nanocomposite produced via a mechanochemical synthesis route. International Journal of Materials Research, 2020, 111, 491-503.	0.3	0
3	Material loss of infiltrated W-10wt.%Cu by alumina particles propelled by a high-velocity-oxy-fuel system. International Journal of Refractory Metals and Hard Materials, 2018, 72, 194-198.	3.8	Ο
4	Recent progress in development of tungsten-copper composites: Fabrication, modification and applications. International Journal of Refractory Metals and Hard Materials, 2018, 75, 30-42.	3.8	103
5	Microstructure evolution and formation of needle-like WO 3 nanowire during sintering of submicron tungsten particles. International Journal of Refractory Metals and Hard Materials, 2018, 70, 93-100.	3.8	2
6	Transpiration cooling during ultra-high temperature erosion. Materials Letters, 2018, 211, 203-207.	2.6	10
7	The effect of contamination and skeleton fracture mode on ablation uniformity in W Cu composite. International Journal of Refractory Metals and Hard Materials, 2018, 72, 15-20.	3.8	9
8	Microstructural study on the effect of directional infiltration and Ni activator on tensile strength and conductivity of W-10 wt%Cu composite. International Journal of Refractory Metals and Hard Materials, 2018, 71, 340-351.	3.8	12
9	Microstructural evaluation and mechanical properties of in-situ WC/W-Cu composites fabricated by rGO/W-Cu spark plasma sintering reaction. Materials and Design, 2018, 160, 1196-1207.	7.0	31
10	The process of surface carburization and high temperature wear behavior of infiltrated W-Cu composites. Surface and Coatings Technology, 2018, 353, 300-308.	4.8	29
11	Formation of gradient microstructure and mechanical properties of hot-pressed W-20†wt% Cu composites after sliding friction severe deformation. Materials Characterization, 2018, 144, 325-335.	4.4	11
12	Mutual relationship between material removal rate and W-W interfacial features during ultra-high temperature erosion of infiltrated W-10wt.%Cu composite. International Journal of Refractory Metals and Hard Materials, 2018, 75, 191-201.	3.8	6
13	Experimental and theoretical analysis of the classification of Sn0.3Ag0.7Cu lead-free solders powder. Vacuum, 2018, 156, 277-282.	3.5	7
14	Microstructural study on ultra-high temperature erosion mechanism of infiltrated W-10 wt%Cu composite. International Journal of Refractory Metals and Hard Materials, 2017, 67, 115-124.	3.8	24
15	The effect of sintering activator on the erosion behavior of infiltrated W-10wt%Cu composite. International Journal of Refractory Metals and Hard Materials, 2017, 66, 150-157.	3.8	26
16	The effect of post-sintering annealing on the erosion resistance of infiltrated W-Cu composites. Materials Letters, 2017, 209, 566-570.	2.6	11
17	The effect of compressing pressure on the microstructure and properties of W-10 wt.% Cu composite. International Journal of Materials Research, 2015, 106, 1046-1052.	0.3	11
18	Study on electropolished/anodised aluminium foil before and after dyeing. Surface Engineering, 2014, 30, 165-171.	2.2	4

#	Article	IF	CITATIONS
19	The effect of additive and sintering mechanism on the microstructural characteristics of W–40Cu composites. International Journal of Refractory Metals and Hard Materials, 2012, 32, 39-44.	3.8	45