
Martin Wiedmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4391626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microtiter Plate Assay for Assessment of Listeria monocytogenes Biofilm Formation. Applied and Environmental Microbiology, 2002, 68, 2950-2958.	3.1	799
2	Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. International Journal of Medical Microbiology, 2011, 301, 79-96.	3.6	628
3	Listeria monocytogenes Persistence in Food-Associated Environments: Epidemiology, Strain Characteristics, and Implications for Public Health. Journal of Food Protection, 2014, 77, 150-170.	1.7	566
4	Culture independent analysis of ileal mucosa reveals a selective increase in invasive <i>Escherichia coli</i> of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum. ISME Journal, 2007, 1, 403-418.	9.8	565
5	Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infection and Immunity, 1997, 65, 2707-2716.	2.2	431
6	Identification of Novel Mobilized Colistin Resistance Gene <i>mcr-9</i> in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. MBio, 2019, 10, .	4.1	406
7	Animal contact as a source of human non-typhoidal salmonellosis. Veterinary Research, 2011, 42, 34.	3.0	369
8	Alternative Sigma Factors and Their Roles in Bacterial Virulence. Microbiology and Molecular Biology Reviews, 2005, 69, 527-543.	6.6	325
9	Ecology and Transmission of Listeria monocytogenes Infecting Ruminants and in the Farm Environment. Applied and Environmental Microbiology, 2004, 70, 4458-4467.	3.1	324
10	Listeria monocytogenes ${\rm i}_f$ B Regulates Stress Response and Virulence Functions. Journal of Bacteriology, 2003, 185, 5722-5734.	2.2	321
11	General Stress Transcription Factor Ï, ^B and Its Role in Acid Tolerance and Virulence of <i>Listeria monocytogenes</i> . Journal of Bacteriology, 1998, 180, 3650-3656.	2.2	280
12	Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Applied Microbiology and Biotechnology, 2016, 100, 5273-5287.	3.6	237
13	Listeria monocytogenes Isolates from Foods and Humans Form Distinct but Overlapping Populations. Applied and Environmental Microbiology, 2004, 70, 5833-5841.	3.1	229
14	Landscape and Meteorological Factors Affecting Prevalence of Three Food-Borne Pathogens in Fruit and Vegetable Farms. Applied and Environmental Microbiology, 2013, 79, 588-600.	3.1	229
15	Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology (United Kingdom), 2001, 147, 1095-1104.	1.8	204
16	Molecular Studies on the Ecology of Listeria monocytogenes in the Smoked Fish Processing Industry. Applied and Environmental Microbiology, 2001, 67, 198-205.	3.1	203
17	Detection of Escherichia coli O157:H7 by multiplex PCR. Journal of Clinical Microbiology, 1995, 33, 2188-2191.	3.9	203
18	Multistate Outbreak ofListeria monocytogenesInfection Linked to Delicatessen Turkey Meat. Clinical Infectious Diseases, 2005, 40, 962-967.	5.8	202

#	Article	IF	CITATIONS
19	Emergence, Distribution, and Molecular and Phenotypic Characteristics of <i>Salmonella enterica</i> Serotype 4,5,12:i:–. Foodborne Pathogens and Disease, 2009, 6, 407-415.	1.8	197
20	Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1280-1288.	1.7	185
21	Evolution and Molecular Phylogeny of Listeria monocytogenes Isolated from Human and Animal Listeriosis Cases and Foods. Journal of Bacteriology, 2005, 187, 5537-5551.	2.2	184
22	Nationwide outbreak of listeriosis due to contaminated meat. Epidemiology and Infection, 2006, 134, 744-751.	2.1	184
23	Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss. BMC Genomics, 2010, 11, 688.	2.8	174
24	Modulation of stress and virulence in Listeria monocytogenes. Trends in Microbiology, 2008, 16, 388-396.	7.7	173
25	Select Listeria monocytogenes Subtypes Commonly Found in Foods Carry Distinct Nonsense Mutations in inlA , Leading to Expression of Truncated and Secreted Internalin A, and Are Associated with a Reduced Invasion Phenotype for Human Intestinal Epithelial Cells. Applied and Environmental Microbiology. 2005. 71. 8764-8772.	3.1	170
26	Short-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genomics, 2008, 9, 539.	2.8	170
27	Physiology and Genetics of Listeria Monocytogenes Survival and Growth at Cold Temperatures. Critical Reviews in Food Science and Nutrition, 2008, 49, 237-253.	10.3	170
28	Comparative Analysis of the Ïf ^B -Dependent Stress Responses in <i>Listeria monocytogenes</i> and <i>Listeria innocua</i> Strains Exposed to Selected Stress Conditions. Applied and Environmental Microbiology, 2008, 74, 158-171.	3.1	163
29	Ïf B-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology (United Kingdom), 2004, 150, 3843-3855.	1.8	160
30	Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs. BMC Genomics, 2009, 10, 641.	2.8	160
31	Identification and Characterization of Psychrotolerant Sporeformers Associated with Fluid Milk Production and Processing. Applied and Environmental Microbiology, 2012, 78, 1853-1864.	3.1	160
32	Rapid Whole-Genome Sequencing for Surveillance of <i>Salmonella enterica</i> Serovar Enteritidis. Emerging Infectious Diseases, 2014, 20, 1306-1314.	4.3	155
33	Correlations between Molecular Subtyping and Serotyping of Listeria monocytogenes. Journal of Clinical Microbiology, 2001, 39, 2704-2707.	3.9	154
34	Sigma B Contributes to PrfA-Mediated Virulence in Listeria monocytogenes. Infection and Immunity, 2002, 70, 3948-3952.	2.2	153
35	Risk Factors Associated with Salmonella and Listeria monocytogenes Contamination of Produce Fields. Applied and Environmental Microbiology, 2013, 79, 7618-7627.	3.1	153
36	Diversity of Listeria Species in Urban and Natural Environments. Applied and Environmental Microbiology, 2012, 78, 4420-4433.	3.1	150

#	Article	IF	CITATIONS
37	Molecular Subtyping Methods for Listeria monocytogenes. Journal of AOAC INTERNATIONAL, 2002, 85, 524-532.	1.5	145
38	Growth and Stress Resistance Variation in Culture Broth among Listeria monocytogenes Strains of Various Serotypes and Origins. Journal of Food Protection, 2006, 69, 2640-2647.	1.7	137
39	Ligase chain reaction (LCR)overview and applications Genome Research, 1994, 3, S51-S64.	5.5	135
40	<i>inlA</i> Premature Stop Codons Are Common among <i>Listeria monocytogenes</i> Isolates from Foods and Yield Virulence-Attenuated Strains That Confer Protection against Fully Virulent Strains. Applied and Environmental Microbiology, 2008, 74, 6570-6583.	3.1	135
41	Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica. BMC Genomics, 2011, 12, 425.	2.8	133
42	International Life Sciences Institute North America Listeria monocytogenes Strain Collection: Development of Standard Listeria monocytogenes Strain Sets for Research and Validation Studies. Journal of Food Protection, 2006, 69, 2929-2938.	1.7	132
43	Pathogen, host and environmental factors contributing to the pathogenesis of listeriosis. Cellular and Molecular Life Sciences, 2003, 60, 904-918.	5.4	131
44	Molecular Subtyping and Tracking of Listeria monocytogenes in Latin-Style Fresh-Cheese Processing Plants. Journal of Dairy Science, 2004, 87, 2803-2812.	3.4	128
45	Genetic and phenotypic characterization of Listeria monocytogenes lineage III. Microbiology (United) Tj ETQq1	1 0.784314 1.8	rgBT /Overld
46	Whole-Genome Sequencing Allows for Improved Identification of Persistent Listeria monocytogenes in Food-Associated Environments. Applied and Environmental Microbiology, 2015, 81, 6024-6037.	3.1	127
47	Proposal of a Taxonomic Nomenclature for the Bacillus cereus Group Which Reconciles Genomic Definitions of Bacterial Species with Clinical and Industrial Phenotypes. MBio, 2020, 11, .	4.1	127
48	<i>Salmonella enterica</i> Serotype 4,5,12:i:â^', an Emerging <i>Salmonella</i> Serotype That Represents Multiple Distinct Clones. Journal of Clinical Microbiology, 2009, 47, 3546-3556.	3.9	126
49	Molecular and Phenotypic Characterization of Pseudomonas spp. Isolated from Milk. Applied and Environmental Microbiology, 2000, 66, 2085-2095.	3.1	123
50	Listeria monocytogenes Contamination Patterns for the Smoked Fish Processing Environment and for Raw Fish. Journal of Food Protection, 2003, 66, 52-60.	1.7	121
51	Tracking of Listeria monocytogenes in Smoked Fish Processing Plants. Journal of Food Protection, 2004, 67, 328-341.	1.7	120
52	Sigma B Contributes to Listeria monocytogenes Gastrointestinal Infection but Not to Systemic Spread in the Guinea Pig Infection Model. Infection and Immunity, 2006, 74, 876-886.	2.2	114
53	Microarray-Based Characterization of the <i>Listeria monocytogenes</i> Cold Regulon in Log- and Stationary-Phase Cells. Applied and Environmental Microbiology, 2007, 73, 6484-6498.	3.1	114
54	Listeria floridensis sp. nov., Listeria aquatica sp. nov., Listeria cornellensis sp. nov., Listeria riparia sp. nov. and Listeria grandensis sp. nov., from agricultural and natural environments. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 1882-1889.	1.7	114

#	Article	IF	CITATIONS
55	The Evolving Role of Coliforms As Indicators of Unhygienic Processing Conditions in Dairy Foods. Frontiers in Microbiology, 2016, 7, 1549.	3.5	114
56	Natural Atypical Listeria innocua Strains with Listeria monocytogenes Pathogenicity Island 1 Genes. Applied and Environmental Microbiology, 2004, 70, 4256-4266.	3.1	112
57	Longitudinal Studies on Listeria in Smoked Fish Plants: Impact of Intervention Strategies on Contamination Patterns. Journal of Food Protection, 2004, 67, 2500-2514.	1.7	111
58	Characterization and Pathogenic Potential of Listeria monocytogenes Isolates from the Smoked Fish Industry. Applied and Environmental Microbiology, 2001, 67, 646-653.	3.1	110
59	Identification of Components of the Sigma B Regulon in <i>Listeria monocytogenes</i> That Contribute to Acid and Salt Tolerance. Applied and Environmental Microbiology, 2008, 74, 6848-6858.	3.1	110
60	Listeria monocytogenes Shows Temperature-Dependent and -Independent Responses to Salt Stress, Including Responses That Induce Cross-Protection against Other Stresses. Applied and Environmental Microbiology, 2012, 78, 2602-2612.	3.1	108
61	Pulsed-Field Gel Electrophoresis (PFGE) Analysis of Temporally Matched Listeria monocytogenes Isolates from Human Clinical Cases, Foods, Ruminant Farms, and Urban and Natural Environments Reveals Source-Associated as Well as Widely Distributed PFGE Types. Journal of Clinical Microbiology, 2007, 45, 865-873.	3.9	107
62	Contributions of Listeria monocytogenes If B and PrfA to expression of virulence and stress response genes during extra- and intracellular growth. Microbiology (United Kingdom), 2006, 152, 1827-1838.	1.8	107
63	Influence of raw milk quality on processed dairy products: How do raw milk quality test results relate to product quality and yield?. Journal of Dairy Science, 2016, 99, 10128-10149.	3.4	106
64	Listeria monocytogenesin Multiple Habitats and Host Populations: Review of Available Data for Mathematical Modeling. Foodborne Pathogens and Disease, 2006, 3, 319-336.	1.8	105
65	<i>Listeria monocytogenes</i> if ^B Modulates PrfA-Mediated Virulence Factor Expression. Infection and Immunity, 2009, 77, 2113-2124.	2.2	104
66	Exposure to Salt and Organic Acids Increases the Ability of Listeria monocytogenes To Invade Caco-2 Cells but Decreases Its Ability To Survive Gastric Stress. Applied and Environmental Microbiology, 2006, 72, 5384-5395.	3.1	103
67	Nisin Resistance of Listeria monocytogenes Is Increased by Exposure to Salt Stress and Is Mediated via LiaR. Applied and Environmental Microbiology, 2013, 79, 5682-5688.	3.1	103
68	Omics approaches in food safety: fulfilling the promise?. Trends in Microbiology, 2014, 22, 275-281.	7.7	103
69	When cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese spoilage. Journal of Dairy Science, 2011, 94, 3176-3183.	3.4	101
70	Characterization of Emetic and Diarrheal Bacillus cereus Strains From a 2016 Foodborne Outbreak Using Whole-Genome Sequencing: Addressing the Microbiological, Epidemiological, and Bioinformatic Challenges. Frontiers in Microbiology, 2019, 10, 144.	3.5	101
71	Rational Design of DNA Sequence-Based Strategies for Subtyping Listeria monocytogenes. Journal of Clinical Microbiology, 2002, 40, 3319-3325.	3.9	100
72	A Whole-Genome Single Nucleotide Polymorphism-Based Approach To Trace and Identify Outbreaks Linked to a Common Salmonella enterica subsp. enterica Serovar Montevideo Pulsed-Field Gel Electrophoresis Type. Applied and Environmental Microbiology, 2011, 77, 8648-8655.	3.1	100

#	Article	lF	CITATIONS
73	Transcriptomic and Phenotypic Analyses Identify Coregulated, Overlapping Regulons among PrfA, CtsR, HrcA, and the Alternative Sigma Factors Ïf ^B , Ïf ^C , If ^H , and Ïf ^L in <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2011, 77, 187-200.	3.1	100
74	Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 286-292.	1.7	100
75	A 100-Year Review: Microbiology and safety of milk handling. Journal of Dairy Science, 2017, 100, 9933-9951.	3.4	100
76	DNA Sequence-Based Subtyping and Evolutionary Analysis of Selected Salmonella enterica Serotypes. Journal of Clinical Microbiology, 2005, 43, 3688-3698.	3.9	99
77	Molecular Subtyping To Detect Human Listeriosis Clusters. Emerging Infectious Diseases, 2003, 9, 672-680.	4.3	99
78	Antimicrobial Resistance in Nontyphoidal Salmonella. Journal of Food Protection, 2007, 70, 780-790.	1.7	98
79	Ïf B-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. Microbiology (United Kingdom), 2003, 149, 3247-3256.	1.8	96
80	Lineage specific recombination rates and microevolution in Listeria monocytogenes. BMC Evolutionary Biology, 2008, 8, 277.	3.2	96
81	<i>Listeria monocytogenes</i> از ^B Has a Small Core Regulon and a Conserved Role in Virulence but Makes Differential Contributions to Stress Tolerance across a Diverse Collection of Strains. Applied and Environmental Microbiology, 2010, 76, 4216-4232.	3.1	96
82	Embracing Diversity: Differences in Virulence Mechanisms, Disease Severity, and Host Adaptations Contribute to the Success of Nontyphoidal Salmonella as a Foodborne Pathogen. Frontiers in Microbiology, 2019, 10, 1368.	3.5	95
83	A Population Genetics-Based and Phylogenetic Approach to Understanding the Evolution of Virulence in the Genus <i>Listeria</i> . Applied and Environmental Microbiology, 2010, 76, 6085-6100.	3.1	94
84	Seek and Destroy Process: Listeria monocytogenes Process Controls in the Ready-to-Eat Meat and Poultry Industry. Journal of Food Protection, 2015, 78, 436-445.	1.7	94
85	Genome Diversification in Phylogenetic Lineages I and II of Listeria monocytogenes : Identification of Segments Unique to Lineage II Populations. Journal of Bacteriology, 2003, 185, 5573-5584.	2.2	93
86	Differentiation of Listeria monocytogenes and Listeria innocua by 16S rRNA genes and intraspecies discrimination of Listeria monocytogenes strains by random amplified polymorphic DNA polymorphisms. Applied and Environmental Microbiology, 1993, 59, 304-308.	3.1	93
87	Comparison of Typing Methods with a New Procedure Based on Sequence Characterization for Salmonella Serovar Prediction. Journal of Clinical Microbiology, 2013, 51, 1786-1797.	3.9	92
88	Spatial and Temporal Factors Associated with an Increased Prevalence of Listeria monocytogenes in Spinach Fields in New York State. Applied and Environmental Microbiology, 2015, 81, 6059-6069.	3.1	92
89	Molecular Characterization of Listeria monocytogenes from Natural and Urban Environments. Journal of Food Protection, 2006, 69, 93-105.	1.7	89
90	Geographical and Meteorological Factors Associated with Isolation of Listeria Species in New York State Produce Production and Natural Environments. Journal of Food Protection, 2014, 77, 1919-1928.	1.7	89

#	Article	IF	CITATIONS
91	Whole-Genome Sequencing of Drug-Resistant Salmonella enterica Isolates from Dairy Cattle and Humans in New York and Washington States Reveals Source and Geographic Associations. Applied and Environmental Microbiology, 2017, 83, .	3.1	89
92	Genomic Epidemiology ofSalmonella entericaSerotype Enteritidis based on Population Structure of Prevalent Lineages. Emerging Infectious Diseases, 2014, 20, 1481-1489.	4.3	87
93	Ribotype diversity of Listeria monocytogenes strains associated with outbreaks of listeriosis in ruminants. Journal of Clinical Microbiology, 1996, 34, 1086-1090.	3.9	86
94	Ceftiofur-Resistant Salmonella Strains Isolated from Dairy Farms Represent Multiple Widely Distributed Subtypes That Evolved by Independent Horizontal Gene Transfer. Antimicrobial Agents and Chemotherapy, 2005, 49, 4061-4067.	3.2	84
95	Persistent Listeria monocytogenes subtypes isolated from a smoked fish processing facility included both phage susceptible and resistant isolates. Food Microbiology, 2013, 35, 38-48.	4.2	84
96	Role of σ B in Regulating the Compatible Solute Uptake Systems of Listeria monocytogenes : Osmotic Induction of opuC Is σ B Dependent. Applied and Environmental Microbiology, 2003, 69, 2015-2022.	3.1	82
97	Genomic characterization provides new insight into Salmonella phage diversity. BMC Genomics, 2013, 14, 481.	2.8	80
98	Rapid, High-Throughput Identification of Anthrax-Causing and Emetic Bacillus cereus Group Genome Assemblies via BTyper, a Computational Tool for Virulence-Based Classification of Bacillus cereus Group Isolates by Using Nucleotide Sequencing Data. Applied and Environmental Microbiology, 2017, 83, .	3.1	80
99	Selection and Characterization of Phage-Resistant Mutant Strains of Listeria monocytogenes Reveal Host Genes Linked to Phage Adsorption. Applied and Environmental Microbiology, 2015, 81, 4295-4305.	3.1	78
100	Production of hemolysin BL by Bacillus cereus group isolates of dairy origin is associated with whole-genome phylogenetic clade. BMC Genomics, 2016, 17, 581.	2.8	77
101	A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Science, 2020, 369, 54-59.	12.6	77
102	Listeria monocytogenes Subgroups IIIA, IIIB, and IIIC Delineate Genetically Distinct Populations with Varied Pathogenic Potential. Journal of Clinical Microbiology, 2006, 44, 4229-4233.	3.9	76
103	Diverse Geno- and Phenotypes of Persistent Listeria monocytogenes Isolates from Fermented Meat Sausage Production Facilities in Portugal. Applied and Environmental Microbiology, 2011, 77, 2701-2715.	3.1	76
104	Molecular methods for serovar determination of Salmonella. Critical Reviews in Microbiology, 2015, 41, 309-325.	6.1	76
105	Multilocus Sequence Typing of Listeria monocytogenes by Use of Hypervariable Genes Reveals Clonal and Recombination Histories of Three Lineages. Applied and Environmental Microbiology, 2004, 70, 2193-2203.	3.1	75
106	Salt Stress Phenotypes in <i>Listeria monocytogenes</i> Vary by Genetic Lineage and Temperature. Foodborne Pathogens and Disease, 2010, 7, 1537-1549.	1.8	75
107	Development of Molecular Typing Methods for Bacillus spp. and Paenibacillus spp. Isolated from Fluid Milk Products. Journal of Food Science, 2006, 71, M50.	3.1	74
108	Precision food safety: A systems approach to food safety facilitated byÂgenomics tools. TrAC - Trends in Analytical Chemistry, 2017, 96, 52-61.	11.4	74

#	Article	IF	CITATIONS
109	Intraclade Variability in Toxin Production and Cytotoxicity of Bacillus cereus Group Type Strains and Dairy-Associated Isolates. Applied and Environmental Microbiology, 2018, 84, .	3.1	74
110	Evaluation of " Helicobacter heilmannii ―Subtypes in the Gastric Mucosas of Cats and Dogs. Journal of Clinical Microbiology, 2004, 42, 2144-2151.	3.9	73
111	Distribution of Listeria monocytogenes Molecular Subtypes among Human and Food Isolates from New York State Shows Persistence of Human Disease–Associated Listeria monocytogenes Strains in Retail Environments. Journal of Food Protection, 2004, 67, 1417-1428.	1.7	72
112	Attributing Risk to Listeria monocytogenes Subgroups: Dose Response in Relation to Genetic Lineages. Journal of Food Protection, 2006, 69, 335-344.	1.7	72
113	Temperature-Dependent Expression of Listeria monocytogenes Internalin and Internalin-Like Genes Suggests Functional Diversity of These Proteins among the Listeriae. Applied and Environmental Microbiology, 2007, 73, 2806-2814.	3.1	72
114	Comparative Genomic and Morphological Analyses of Listeria Phages Isolated from Farm Environments. Applied and Environmental Microbiology, 2014, 80, 4616-4625.	3.1	72
115	Irrigation Is Significantly Associated with an Increased Prevalence of Listeria monocytogenes in Produce Production Environments in New York State. Journal of Food Protection, 2015, 78, 1132-1141.	1.7	72
116	Genome-wide analyses reveal lineage specific contributions of positive selection and recombination to the evolution of Listeria monocytogenes. BMC Evolutionary Biology, 2008, 8, 233.	3.2	71
117	Quantitative Risk Assessment of Listeriosis-Associated Deaths Due to Listeria monocytogenes Contamination of Deli Meats Originating from Manufacture and Retail. Journal of Food Protection, 2010, 73, 620-630.	1.7	71
118	Ϊƒ ^B -Dependent and Ϊƒ ^B -Independent Mechanisms Contribute to Transcription of <i>Listeria monocytogenes</i> Cold Stress Genes during Cold Shock and Cold Growth. Applied and Environmental Microbiology, 2007, 73, 6019-6029.	3.1	70
119	Contributions of Two-Component Regulatory Systems, Alternative Ïf Factors, and Negative Regulators to Listeria monocytogenes Cold Adaptation and Cold Growth. Journal of Food Protection, 2008, 71, 420-425.	1.7	70
120	Food Microbe Tracker: A Web-Based Tool for Storage and Comparison of Food-Associated Microbes. Journal of Food Protection, 2013, 76, 283-294.	1.7	70
121	Evaluation of dairy powder products implicates thermophilic sporeformers as the primary organisms of interest. Journal of Dairy Science, 2014, 97, 2487-2497.	3.4	70
122	Listeria monocytogenes fecal shedding in dairy cattle shows high levels of day-to-day variation and includes outbreaks and sporadic cases of shedding of specific L. monocytogenes subtypes. Preventive Veterinary Medicine, 2007, 80, 287-305.	1.9	68
123	Listeria monocytogenes Grown at 7°C Shows Reduced Acid Survival and an Altered Transcriptional Response to Acid Shock Compared to L. monocytogenes Grown at 37°C. Applied and Environmental Microbiology, 2012, 78, 3824-3836.	3.1	68
124	Recombination and positive selection contribute to evolution of Listeria monocytogenes inlA. Microbiology (United Kingdom), 2007, 153, 2666-2678.	1.8	68
125	A Small RNA Controls Expression of the Chitinase ChiA in Listeria monocytogenes. PLoS ONE, 2011, 6, e19019.	2.5	67
126	The Cost and Benefit ofListeria MonocytogenesFood Safety Measures. Critical Reviews in Food Science and Nutrition, 2005, 44, 513-523.	10.3	66

#	Article	IF	CITATIONS
127	Prevalence and Molecular Diversity of Listeria monocytogenes in Retail Establishments. Journal of Food Protection, 2009, 72, 2337-2349.	1.7	66
128	Resilience in the Face of Uncertainty: Sigma Factor B Fine-Tunes Gene Expression To Support Homeostasis in Gram-Positive Bacteria. Applied and Environmental Microbiology, 2016, 82, 4456-4469.	3.1	66
129	Transcriptomic and Phenotypic Analyses Suggest a Network between the Transcriptional Regulators HrcA and Ïf ^B in <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2007, 73, 7981-7991.	3.1	64
130	Homopolymeric tracts represent a general regulatory mechanism in prokaryotes. BMC Genomics, 2010, 11, 102.	2.8	64
131	Inhibition of 15-lipoxygenase leads to delayed organelle degradation in the reticulocyte. FEBS Letters, 2001, 489, 51-54.	2.8	63
132	Evolutionary Dynamics of the Accessory Genome of Listeria monocytogenes. PLoS ONE, 2013, 8, e67511.	2.5	63
133	Longitudinal Monitoring of Listeria monocytogenes Contamination Patterns in a Farmstead Dairy Processing Facility. Journal of Dairy Science, 2007, 90, 2517-2524.	3.4	62
134	Genome wide evolutionary analyses reveal serotype specific patterns of positive selection in selected Salmonella serotypes. BMC Evolutionary Biology, 2009, 9, 264.	3.2	62
135	Bacterial Tracking in a Dairy Production System Using Phenotypic and Ribotyping Methods. Journal of Food Protection, 1998, 61, 1336-1340.	1.7	61
136	The Listeria monocytogenes prfAP2 promoter is regulated by sigma B in a growth phase dependent manner. FEMS Microbiology Letters, 2005, 245, 329-336.	1.8	61
137	Prevalence, Distribution, and Diversity of Listeria monocytogenes in Retail Environments, Focusing on Small Establishments and Establishments with a History of Failed Inspections. Journal of Food Protection, 2011, 74, 1083-1095.	1.7	61
138	Identification and Characterization of Novel Salmonella Mobile Elements Involved in the Dissemination of Genes Linked to Virulence and Transmission. PLoS ONE, 2012, 7, e41247.	2.5	61
139	VirR-Mediated Resistance of Listeria monocytogenes against Food Antimicrobials and Cross-Protection Induced by Exposure to Organic Acid Salts. Applied and Environmental Microbiology, 2015, 81, 4553-4562.	3.1	61
140	Transcriptomic Analysis of the Adaptation of Listeria monocytogenes to Growth on Vacuum-Packed Cold Smoked Salmon. Applied and Environmental Microbiology, 2015, 81, 6812-6824.	3.1	61
141	Comparative Analysis of Tools and Approaches for Source Tracking Listeria monocytogenes in a Food Facility Using Whole-Genome Sequence Data. Frontiers in Microbiology, 2019, 10, 947.	3.5	61
142	Comparative Genomic Analysis of the sigB Operon in Listeria monocytogenes and in Other Gram-Positive Bacteria. Current Microbiology, 2004, 48, 39-46.	2.2	60
143	Multilocus Sequence Typing Supports the Hypothesis that Cow- and Human-Associated Salmonella Isolates Represent Distinct and Overlapping Populations. Applied and Environmental Microbiology, 2006, 72, 7575-7585.	3.1	60
144	Quantitative Risk Assessment for Listeria monocytogenes in Selected Categories of Deli Meats: Impact of Lactate and Diacetate on Listeriosis Cases and Deaths. Journal of Food Protection, 2009, 72, 978-989.	1.7	60

#	Article	IF	CITATIONS
145	Equine Stomachs Harbor an Abundant and Diverse Mucosal Microbiota. Applied and Environmental Microbiology, 2012, 78, 2522-2532.	3.1	60
146	Spore populations among bulk tank raw milk and dairy powders are significantly different. Journal of Dairy Science, 2015, 98, 8492-8504.	3.4	60
147	Proteomic Analyses of a <i>Listeria monocytogenes</i> Mutant Lacking σ ^B Identify New Components of the σ ^B Regulon and Highlight a Role for Ĭƒ ^B in the Utilization of Glycerol. Applied and Environmental Microbiology, 2008, 74, 594-604.	3.1	59
148	Symposium review: Effect of post-pasteurization contamination on fluid milk quality. Journal of Dairy Science, 2018, 101, 861-870.	3.4	59
149	Systematic review of the <i>Listeria monocytogenes</i> Ïf ^B regulon supports a role in stress response, virulence and metabolism. Future Microbiology, 2019, 14, 801-828.	2.0	59
150	Evaluation of farm management practices as risk factors for clinical listeriosis and fecal shedding of Listeria monocytogenes in ruminants. Journal of the American Veterinary Medical Association, 2005, 227, 1808-1814.	0.5	58
151	Molecular Subtyping and Characterization of Bovine and Human Streptococcus agalactiae Isolates. Journal of Clinical Microbiology, 2005, 43, 1177-1186.	3.9	58
152	Combined sigB allelic typing and multiplex PCR provide improved discriminatory power and reliability for Listeria monocytogenes molecular serotyping. Journal of Microbiological Methods, 2007, 68, 52-59.	1.6	57
153	Listeria monocytogenes and Listeria spp. Contamination Patterns in Retail Delicatessen Establishments in Three U.S. States. Journal of Food Protection, 2014, 77, 1929-1939.	1.7	57
154	Complex Interactions Between Weather, and Microbial and Physicochemical Water Quality Impact the Likelihood of Detecting Foodborne Pathogens in Agricultural Water. Frontiers in Microbiology, 2020, 11, 134.	3.5	57
155	Discrimination of Listeria monocytogenes from other Listeria species by ligase chain reaction. Applied and Environmental Microbiology, 1992, 58, 3443-3447.	3.1	57
156	Multilocus Sequence Typing of Streptococcus uberis Provides Sensitive and Epidemiologically Relevant Subtype Information and Reveals Positive Selection in the Virulence Gene pauA. Journal of Clinical Microbiology, 2005, 43, 2407-2417.	3.9	56
157	Development of a multilocus variable-number of tandem repeat typing method for Listeria monocytogenes serotype 4b strains. International Journal of Food Microbiology, 2008, 124, 239-249.	4.7	56
158	Assessment and Comparison of Molecular Subtyping and Characterization Methods for Salmonella. Frontiers in Microbiology, 2019, 10, 1591.	3.5	56
159	Detection of Listeria monocytogenes with a nonisotopic polymerase chain reaction-coupled ligase chain reaction assay. Applied and Environmental Microbiology, 1993, 59, 2743-2745.	3.1	56
160	The Alternative Sigma Factor ÏfB and the Virulence Gene Regulator PrfA Both Regulate Transcription of Listeria monocytogenes Internalins. Applied and Environmental Microbiology, 2007, 73, 2919-2930.	3.1	54
161	Phenotypic and Transcriptomic Analyses Demonstrate Interactions between the Transcriptional Regulators CtsR and Sigma B in <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2007, 73, 7967-7980.	3.1	54
162	Real-Time PCR Detection of Paenibacillus spp. in Raw Milk To Predict Shelf Life Performance of Pasteurized Fluid Milk Products. Applied and Environmental Microbiology, 2012, 78, 5855-5863.	3.1	54

#	Article	IF	CITATIONS
163	Listeria cossartiae sp. nov., Listeria immobilis sp. nov., Listeria portnoyi sp. nov. and Listeria rustica sp. nov., isolated from agricultural water and natural environments. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	54
164	Nationwide genomic atlas of soil-dwelling Listeria reveals effects of selection and population ecology on pangenome evolution. Nature Microbiology, 2021, 6, 1021-1030.	13.3	54
165	Definition of Genetically Distinct Attenuation Mechanisms in Naturally Virulence-Attenuated Listeria monocytogenes by Comparative Cell Culture and Molecular Characterization. Applied and Environmental Microbiology, 2005, 71, 3900-3910.	3.1	53
166	Listeria monocytogenes internalins are highly diverse and evolved by recombination and positive selection. Infection, Genetics and Evolution, 2006, 6, 378-389.	2.3	53
167	Modeling of Spatially Referenced Environmental and Meteorological Factors Influencing the Probability of <i>Listeria </i> Species Isolation from Natural Environments. Applied and Environmental Microbiology, 2009, 75, 5893-5909.	3.1	53
168	The Transcriptional Response of Listeria monocytogenes during Adaptation to Growth on Lactate and Diacetate Includes Synergistic Changes That Increase Fermentative Acetoin Production. Applied and Environmental Microbiology, 2011, 77, 5294-5306.	3.1	53
169	Variation in <i>Listeria monocytogenes</i> Dose Responses in Relation to Subtypes Encoding a Full-Length or Truncated Internalin A. Applied and Environmental Microbiology, 2011, 77, 1171-1180.	3.1	53
170	Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping. Frontiers in Microbiology, 2018, 9, 836.	3.5	53
171	Cross Talk between SigB and PrfA in Listeria monocytogenes Facilitates Transitions between Extra- and Intracellular Environments. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	53
172	Recurrent and Sporadic Listeria monocytogenes Contamination in Alheiras Represents Considerable Diversity, Including Virulence-Attenuated Isolates. Applied and Environmental Microbiology, 2007, 73, 3887-3895.	3.1	52
173	A standard bacterial isolate set for research on contemporary dairy spoilage. Journal of Dairy Science, 2015, 98, 5806-5817.	3.4	52
174	Evolution of Listeria monocytogenes in a Food Processing Plant Involves Limited Single-Nucleotide Substitutions but Considerable Diversification by Gain and Loss of Prophages. Applied and Environmental Microbiology, 2020, 86, .	3.1	52
175	Quantitative Risk Assessment of Listeriosis Due to Consumption of Raw Milkâ€. Journal of Food Protection, 2011, 74, 1268-1281.	1.7	51
176	Prevalence and Distribution of Listeria monocytogenes <i>inlA</i> Alleles Prone to Phase Variation and <i>inlA</i> Alleles with Premature Stop Codon Mutations among Human, Food, Animal, and Environmental Isolates. Applied and Environmental Microbiology, 2015, 81, 8339-8345.	3.1	51
177	Diagnosis and epidemiological association of Listeria monocytogenes strains in two outbreaks of listerial encephalitis in small ruminants. Journal of Clinical Microbiology, 1994, 32, 991-996.	3.9	51
178	Subtyping of Bacterial Foodborne Pathogens. Nutrition Reviews, 2002, 60, 201-208.	5.8	50
179	Temperature Significantly Affects the Plaquing and Adsorption Efficiencies of Listeria Phages. Frontiers in Microbiology, 2016, 7, 631.	3.5	50
180	Home Alone: Elimination of All but One Alternative Sigma Factor in Listeria monocytogenes Allows Prediction of New Roles for ÏfB. Frontiers in Microbiology, 2017, 8, 1910.	3.5	49

#	Article	IF	CITATIONS
181	Keeping up with the <i>Bacillus cereus</i> group: taxonomy through the genomics era and beyond. Critical Reviews in Food Science and Nutrition, 2022, 62, 7677-7702.	10.3	49
182	Automated Ribotyping Using Different Enzymes To Improve Discrimination of Listeria monocytogenes Isolates, with a Particular Focus on Serotype 4b Strains. Journal of Clinical Microbiology, 2001, 39, 3002-3005.	3.9	48
183	<i>Salmonella enterica</i> Serotype Cerro Among Dairy Cattle in New York: An Emerging Pathogen?. Foodborne Pathogens and Disease, 2010, 7, 659-665.	1.8	48
184	Recombination and positive selection contributed to the evolution of Listeria monocytogenes lineages III and IV, two distinct and well supported uncommon L. monocytogenes lineages. Infection, Genetics and Evolution, 2011, 11, 1881-1890.	2.3	48
185	The Cytolethal Distending Toxin Produced by Nontyphoidal <i>Salmonella</i> Serotypes Javiana, Montevideo, Oranienburg, and Mississippi Induces DNA Damage in a Manner Similar to That of Serotype Typhi. MBio, 2016, 7, .	4.1	48
186	Identification and characterization of psychrotolerant coliform bacteria isolated from pasteurized fluid milk. Journal of Dairy Science, 2016, 99, 130-140.	3.4	48
187	Emerging needs and opportunities in foodborne disease detection and prevention: From tools to people. Food Microbiology, 2018, 75, 65-71.	4.2	48
188	Landscape, Water Quality, and Weather Factors Associated With an Increased Likelihood of Foodborne Pathogen Contamination of New York Streams Used to Source Water for Produce Production. Frontiers in Sustainable Food Systems, 2020, 3, .	3.9	48
189	Molecular subtyping methods for Listeria monocytogenes. Journal of AOAC INTERNATIONAL, 2002, 85, 524-31.	1.5	48
190	Silage Collected from Dairy Farms Harbors an Abundance of Listeriaphages with Considerable Host Range and Genome Size Diversity. Applied and Environmental Microbiology, 2012, 78, 8666-8675.	3.1	47
191	Peroxide Test Strips Detect Added Hydrogen Peroxide in Raw Milk at Levels Affecting Bacterial Load. Journal of Food Protection, 2014, 77, 1809-1813.	1.7	47
192	Molecular and Phenotypic Characterization of Listeria monocytogenes from U.S. Department of Agriculture Food Safety and Inspection Service Surveillance of Ready-to-Eat Foods and Processing Facilities. Journal of Food Protection, 2010, 73, 861-869.	1.7	46
193	Genome sequencing identifies Listeria fleischmannii subsp. coloradonensis subsp. nov., isolated from a ranch. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3257-3268.	1.7	46
194	Spore test parameters matter: Mesophilic and thermophilic spore counts detected in raw milk and dairy powders differ significantly by test method. Journal of Dairy Science, 2016, 99, 5180-5191.	3.4	46
195	Coliform detection in cheese is associated with specific cheese characteristics, but no association was found with pathogen detection. Journal of Dairy Science, 2016, 99, 6105-6120.	3.4	46
196	Detection of bovine herpesvirus-1 in bovine semen by a nested PCR assay. Journal of Virological Methods, 1993, 44, 129-139.	2.1	45
197	Comparative Evaluation of Culture- and BAX Polymerase Chain Reaction–Based Detection Methods for Listeria spp. and Listeria monocytogenes in Environmental and Raw Fish Samples. Journal of Food Protection, 2001, 64, 1521-1526.	1.7	44
198	Eye Infections due to <i>Listeria Monocytogenes</i> in Three Cows and One Horse. Journal of Veterinary Diagnostic Investigation, 2004, 16, 464-469.	1.1	43

#	Article	IF	CITATIONS
199	Multilocus Sequence Typing of Outbreak-Associated <i>Listeria monocytogenes</i> Isolates to Identify Epidemic Clones. Foodborne Pathogens and Disease, 2010, 7, 257-265.	1.8	43
200	FSL J1-208, a Virulent Uncommon Phylogenetic Lineage IV Listeria monocytogenes Strain with a Small Chromosome Size and a Putative Virulence Plasmid Carrying Internalin-Like Genes. Applied and Environmental Microbiology, 2012, 78, 1876-1889.	3.1	43
201	Salmonella bacteriophage diversity reflects host diversity on dairy farms. Food Microbiology, 2013, 36, 275-285.	4.2	43
202	Characterization of the cytolethal distending toxin (typhoid toxin) in non-typhoidal Salmonella serovars. Gut Pathogens, 2015, 7, 19.	3.4	43
203	Invited review: Controlling dairy product spoilage to reduce food loss and waste. Journal of Dairy Science, 2021, 104, 1251-1261.	3.4	43
204	ÏfBand ÏfLContribute toListeria monocytogenes10403S Response to the Antimicrobial Peptides SdpC and Nisin. Foodborne Pathogens and Disease, 2009, 6, 1057-1065.	1.8	42
205	Environmental responses and phage susceptibility in foodborne pathogens: implications for improving applications in food safety. Current Opinion in Biotechnology, 2014, 26, 45-49.	6.6	42
206	A Syst-OMICS Approach to Ensuring Food Safety and Reducing the Economic Burden of Salmonellosis. Frontiers in Microbiology, 2017, 8, 996.	3.5	42
207	Pseudomonas fluorescens group bacterial strains are responsible for repeat and sporadic postpasteurization contamination and reduced fluid milk shelf life. Journal of Dairy Science, 2018, 101, 7780-7800.	3.4	42
208	Results from raw milk microbiological tests do not predict the shelf-life performance of commercially pasteurized fluid milk. Journal of Dairy Science, 2011, 94, 1211-1222.	3.4	41
209	Listeriosis Outbreak in Dairy Cattle Caused by an Unusual <i>Listeria Monocytogenes</i> Serotype 4b Strain. Journal of Veterinary Diagnostic Investigation, 2011, 23, 155-158.	1.1	41
210	Distributions of Salmonella Subtypes Differ between Two U.S. Produce-Growing Regions. Applied and Environmental Microbiology, 2014, 80, 3982-3991.	3.1	41
211	Identification of dairy farm management practices associated with the presence of psychrotolerant sporeformers in bulk tank milk. Journal of Dairy Science, 2014, 97, 4083-4096.	3.4	41
212	Some <i>Listeria monocytogenes</i> Outbreak Strains Demonstrate Significantly Reduced Invasion, <i>inIA</i> Transcript Levels, and Swarming Motility In Vitro. Applied and Environmental Microbiology, 2009, 75, 5647-5658.	3.1	40
213	Contributions of ÏfB and PrfA to Listeria monocytogenes salt stress under food relevant conditions. International Journal of Food Microbiology, 2014, 177, 98-108.	4.7	40
214	Different management practices are associated with mesophilic and thermophilic spore levels in bulk tank raw milk. Journal of Dairy Science, 2015, 98, 4338-4351.	3.4	40
215	The Prevalence of Multidrug Resistance Is Higher among Bovine than Human <i>Salmonellaenterica</i> Serotype Newport, Typhimurium, and 4,5,12:i:â^' Isolates in the United States but Differs by Serotype and Geographic Region. Applied and Environmental Microbiology, 2010. 76. 5947-5959.	3.1	39
216	Psychrotolerant spore-former growth characterization for the development of a dairy spoilage predictive model. Journal of Dairy Science, 2018, 101, 6964-6981.	3.4	39

#	Article	IF	CITATIONS
217	A decade of improvement: New York State fluid milk quality. Journal of Dairy Science, 2012, 95, 7384-7390.	3.4	38
218	Molecular Ecology of Listeria monocytogenes and Other Listeria Species in Small and Very Small Ready-to-Eat Meat Processing Plants. Journal of Food Protection, 2011, 74, 63-77.	1.7	37
219	Survival of Escherichia coli on Lettuce under Field Conditions Encountered in the Northeastern United States. Journal of Food Protection, 2017, 80, 1214-1221.	1.7	37
220	Alternative approaches to the risk management of Listeria monocytogenes in low risk foods. Food Control, 2021, 123, 107601.	5.5	37
221	Listeria monocytogenes F2365 Carries Several Authentic Mutations Potentially Leading to Truncated Gene Products, Including InIB, and Demonstrates Atypical Phenotypic Characteristics. Journal of Food Protection, 2007, 70, 482-488.	1.7	36
222	Antimicrobial resistant Salmonella in dairy cattle in the United States. Veterinary Research Communications, 2009, 33, 191-209.	1.6	36
223	Farm Animal Contact as Risk Factor for Transmission of Bovine-associated <i>Salmonella</i> Subtypes. Emerging Infectious Diseases, 2012, 18, 1929-1936.	4.3	36
224	Taxonomic reassessment of N4-like viruses using comparative genomics and proteomics suggests a new subfamily - "Enquartavirinae― Archives of Virology, 2015, 160, 3053-3062.	2.1	36
225	Genetic Stability and Evolution of the <i>sigB</i> Allele, Used for Listeria Sensu Stricto Subtyping and Phylogenetic Inference. Applied and Environmental Microbiology, 2017, 83, .	3.1	36
226	Subtype analysis of Salmonella isolated from subclinically infected dairy cattle and dairy farm environments reveals the presence of both human- and bovine-associated subtypes. Veterinary Microbiology, 2014, 170, 307-316.	1.9	35
227	Identification and classification of sampling sites for pathogen environmental monitoring programs for Listeria monocytogenes: Results from an expert elicitation. Food Microbiology, 2018, 75, 2-17.	4.2	35
228	Design Elements of <i>Listeria</i> Environmental Monitoring Programs in Food Processing Facilities: A Scoping Review of Research and Guidance Materials. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1156-1171.	11.7	35
229	Non-radioactive detection of Mycobacterium tuberculosis LCR products in a microtitre plate format. Molecular and Cellular Probes, 1993, 7, 179-186.	2.1	34
230	Application of the BAX for Screening/Genus Listeria Polymerase Chain Reaction System for Monitoring Listeria Species in Cold-Smoked Fish and in the Smoked Fish Processing Environment. Journal of Food Protection, 2000, 63, 343-346.	1.7	34
231	Detection of Listeria in Crawfish Processing Plants and in Raw, Whole Crawfish and Processed Crawfish (Procambarus spp.)â€. Journal of Food Protection, 2002, 65, 1735-1739.	1.7	34
232	Prevalence and Growth of Listeria on Naturally Contaminated Smoked Salmon over 28 Days of Storage at 4°Câ€. Journal of Food Protection, 2004, 67, 1022-1026.	1.7	34
233	Low Prevalence of Listeria monocytogenes in Human Stool. Journal of Food Protection, 2005, 68, 178-181.	1.7	34
234	Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 4397-4404.	1.7	34

#	Article	IF	CITATIONS
235	Prevalence, Persistence, and Diversity of Listeria monocytogenes and Listeria Species in Produce Packinghouses in Three U.S. States. Journal of Food Protection, 2020, 83, 277-286.	1.7	34
236	Listeria monocytogenes in the Chinese food system: strain characterization through partial actA sequencing and tissue-culture pathogenicity assays. Journal of Medical Microbiology, 2005, 54, 217-224.	1.8	33
237	The Listeria monocytogenes σ ^B Regulon and Its Virulence-Associated Functions Are Inhibited by a Small Molecule. MBio, 2011, 2, .	4.1	33
238	Listeria monocytogenes and hemolytic Listeria innocua in poultry. Poultry Science, 2012, 91, 2158-2163.	3.4	33
239	Refinement of the Listeria monocytogenes ÏfB regulon through quantitative proteomic analysis. Microbiology (United Kingdom), 2013, 159, 1109-1119.	1.8	33
240	Development and Validation of Pathogen Environmental Monitoring Programs for Small Cheese Processing Facilities. Journal of Food Protection, 2016, 79, 2095-2106.	1.7	33
241	Growth and persistence of Listeria monocytogenes isolates on the plant model Arabidopsis thaliana. Food Microbiology, 2008, 25, 698-704.	4.2	32
242	Differential Regulation of <i>Listeria monocytogenes</i> Internalin and Internalin-Like Genes by σ ^B and PrfA as Revealed by Subgenomic Microarray Analyses. Foodborne Pathogens and Disease, 2008, 5, 417-435.	1.8	32
243	Ïf ^B - and PrfA-Dependent Transcription of Genes Previously Classified as Putative Constituents of the <i>Listeria monocytogenes</i> PrfA Regulon. Foodborne Pathogens and Disease, 2008, 5, 281-293.	1.8	32
244	Multilocus Variable-Number Tandem-Repeat Method for Typing <i>Salmonella enterica</i> Serovar Newport. Journal of Clinical Microbiology, 2009, 47, 1934-1938.	3.9	32
245	Daily Variability of Listeria Contamination Patterns in a Cold-Smoked Salmon Processing Operation. Journal of Food Protection, 2006, 69, 2123-2133.	1.7	31
246	Comparison of Public Health Impact of Listeria monocytogenes Product-to-Product and Environment-to-Product Contamination of Deli Meats at Retail. Journal of Food Protection, 2011, 74, 1860-1868.	1.7	31
247	Structured Expert Elicitation Aboutâ€, <i>Listeria monocytogenes</i> â€,Crossâ€Contamination in the Environment of Retail Deli Operations in the United States. Risk Analysis, 2012, 32, 1139-1156.	2.7	31
248	Identification of Core Competencies for an Undergraduate Food Safety Curriculum Using a Modified Delphi Approach. Journal of Food Science Education, 2014, 13, 12-21.	1.0	31
249	Salmonella Phages and Prophages: Genomics, Taxonomy, and Applied Aspects. Methods in Molecular Biology, 2015, 1225, 237-287.	0.9	31
250	Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes. Applied and Environmental Microbiology, 2017, 83, .	3.1	31
251	Temporal Genomic Phylogeny Reconstruction Indicates a Geospatial Transmission Path of Salmonella Cerro in the United States and a Clade-Specific Loss of Hydrogen Sulfide Production. Frontiers in Microbiology, 2017, 8, 737.	3.5	31
252	Mathematical Model of Listeria monocytogenes Cross-Contamination in a Fish Processing Plant. Journal of Food Protection, 2004, 67, 2688-2697.	1.7	30

#	Article	IF	CITATIONS
253	Allelic exchange and site-directed mutagenesis probe the contribution of ActA amino-acid variability to phosphorylation and virulence-associated phenotypes amongListeria monocytogenesstrains. FEMS Microbiology Letters, 2006, 254, 300-307.	1.8	30
254	Salmonella phages isolated from dairy farms in Thailand show wider host range than a comparable set of phages isolated from U.S. dairy farms. Veterinary Microbiology, 2014, 172, 345-352.	1.9	30
255	The Typhoid Toxin Produced by the Nontyphoidal <i>Salmonella enterica</i> Serotype Javiana Is Required for Induction of a DNA Damage Response <i>In Vitro</i> and Systemic Spread <i>In Vivo</i> . MBio, 2018, 9, .	4.1	30
256	Factors that contribute to persistent Listeria in food processing facilities and relevant interventions: A rapid review. Food Control, 2022, 133, 108579.	5.5	30
257	Molecular Epidemiology and Cluster Analysis of Human Listeriosis Cases in Three U.S. States. Journal of Food Protection, 2006, 69, 1680-1689.	1.7	29
258	Pulsed-Field Gel Electrophoresis Diversity of Human and Bovine Clinical <i>Salmonella</i> Isolates. Foodborne Pathogens and Disease, 2010, 7, 707-717.	1.8	29
259	Escherichia coli transfer from simulated wildlife feces to lettuce during foliar irrigation: A field study in the Northeastern United States. Food Microbiology, 2017, 68, 24-33.	4.2	29
260	Survival and detection of coliforms, Enterobacteriaceae, and gram-negative bacteria in Greek yogurt. Journal of Dairy Science, 2017, 100, 950-960.	3.4	29
261	Internal transcribed spacer (ITS) sequencing reveals considerable fungal diversity in dairy products. Journal of Dairy Science, 2017, 100, 8814-8825.	3.4	29
262	Identification of Erwinia stewartii by a ligase chain reaction assay. Applied and Environmental Microbiology, 1994, 60, 278-284.	3.1	29
263	Lineage specific recombination and positive selection in coding and intragenic regions contributed to evolution of the main Listeria monocytogenes virulence gene cluster. Infection, Genetics and Evolution, 2008, 8, 566-576.	2.3	28
264	Implementation of Statistical Tools To Support Identification and Management of Persistent Listeria monocytogenes Contamination in Smoked Fish Processing Plants. Journal of Food Protection, 2013, 76, 796-811.	1.7	28
265	Evaluation of different methods to detect microbial hygiene indicators relevant in the dairy industry. Journal of Dairy Science, 2016, 99, 7033-7042.	3.4	28
266	Impact of Intervention Strategies on Listeria Contamination Patterns in Crawfish Processing Plants: A Longitudinal Studyâ€. Journal of Food Protection, 2004, 67, 1163-1169.	1.7	27
267	Protein level identification of the Listeria monocytogenes Sigma H, Sigma L, and Sigma C regulons. BMC Microbiology, 2013, 13, 156.	3.3	27
268	Efficacy of different antimicrobials on inhibition of Listeria monocytogenes growth in laboratory medium and on cold-smoked salmon. International Journal of Food Microbiology, 2013, 165, 265-275.	4.7	27
269	Genomic comparison of sporeforming bacilli isolated from milk. BMC Genomics, 2014, 15, 26.	2.8	27
270	Validation of a Previously Developed Geospatial Model That Predicts the Prevalence of Listeria monocytogenes in New York State Produce Fields. Applied and Environmental Microbiology, 2016, 82, 797-807.	3.1	27

#	Article	IF	CITATIONS
271	Enhanced Sanitation Standard Operating Procedures Have Limited Impact on Listeria monocytogenes Prevalence in Retail Delis. Journal of Food Protection, 2017, 80, 1903-1912.	1.7	27
272	EnABLe: An agent-based model to understand Listeria dynamics in food processing facilities. Scientific Reports, 2019, 9, 495.	3.3	27
273	ADSA Foundation Scholar Award—An Integrated Science-Based Approach to Dairy Food Safety: Listeria monocytogenes as a Model System. Journal of Dairy Science, 2003, 86, 1865-1875.	3.4	26
274	Alternative Sigma Factor ÏfB ls Not Essential for Listeria monocytogenes Surface Attachment. Journal of Food Protection, 2005, 68, 311-317.	1.7	26
275	Agar Disk Diffusion and Automated Microbroth Dilution Produce Similar Antimicrobial Susceptibility Testing Results for <i>Salmonella</i> Serotypes Newport, Typhimurium, and 4,5,12:i-, But Differ in Economic Cost. Foodborne Pathogens and Disease, 2011, 8, 1281-1288.	1.8	26
276	Exploration of the Role of the Non-Coding RNA SbrE in L. monocytogenes Stress Response. International Journal of Molecular Sciences, 2013, 14, 378-393.	4.1	26
277	The ADP-Ribosylating Toxins of Salmonella. Toxins, 2019, 11, 416.	3.4	26
278	Investigation of a listeriosis epizootic in sheep in New York state. American Journal of Veterinary Research, 1997, 58, 733-7.	0.6	26
279	Molecular investigation of a listeriosis outbreak in goats caused by an unusual strain of Listeria monocytogenes. Journal of the American Veterinary Medical Association, 1999, 215, 369-71, 340.	0.5	26
280	Equine motor neuron disease is not linked to Cu/Zn superoxide dismutase mutations: sequence analysis of the equine Cu/Zn superoxide dismutase cDNA. Gene, 1996, 178, 83-88.	2.2	24
281	Characterization of the prfA Virulence Gene Cluster Insertion Site in Non-Hemolytic Listeria spp.: Probing the Evolution of the Listeria Virulence Gene Island. Current Microbiology, 2001, 43, 271-277.	2.2	24
282	Salt Stress-Induced Transcription of σ ^B - and CtsR-Regulated Genes in Persistent and Non-persistent <i>Listeria monocytogenes</i> Strains from Food Processing Plants. Foodborne Pathogens and Disease, 2012, 9, 198-206.	1.8	24
283	Reduction of pasteurization temperature leads to lower bacterial outgrowth in pasteurized fluid milk during refrigerated storage: A case study. Journal of Dairy Science, 2012, 95, 471-475.	3.4	24
284	Evaluation of various selective media for the detection of Pseudomonas species in pasteurized milk. Journal of Dairy Science, 2012, 95, 1568-1574.	3.4	24
285	Diversity of Streptococcus agalactiae and Staphylococcus aureus ribotypes recovered from New York dairy herds. American Journal of Veterinary Research, 1997, 58, 482-7.	0.6	24
286	Distribution of Internalin Gene Profiles ofListeria monocytogenesIsolates from Different Sources Associated with Phylogenetic Lineages. Foodborne Pathogens and Disease, 2007, 4, 222-232.	1.8	23
287	Regulatory network features in Listeria monocytogenes—changing the way we talk. Frontiers in Cellular and Infection Microbiology, 2014, 4, 14.	3.9	23
288	<i>Salmonella enterica</i> Serovar Oranienburg Outbreak in a Veterinary Medical Teaching Hospital with Evidence of Nosocomial and On-Farm Transmission. Vector-Borne and Zoonotic Diseases, 2014, 14, 496-502.	1.5	23

#	Article	IF	CITATIONS
289	Approaches to empower the implementation of new tools to detect and prevent foodborne pathogens in food processing. Food Microbiology, 2018, 75, 126-132.	4.2	23
290	Bacterial spore levels in bulk tank raw milk are influenced by environmental and cow hygiene factors. Journal of Dairy Science, 2019, 102, 9689-9701.	3.4	23
291	The Salmonella enterica Plasmidome as a Reservoir of Antibiotic Resistance. Microorganisms, 2020, 8, 1016.	3.6	23
292	Cereulide Synthetase Acquisition and Loss Events within the Evolutionary History of Group III <i>Bacillus cereus Sensu Lato</i> Facilitate the Transition between Emetic and Diarrheal Foodborne Pathogens. MBio, 2020, 11, .	4.1	23
293	Characterization of dominant lactic acid bacteria isolated from São Jorge cheese, using biochemical and ribotyping methods. Journal of Applied Microbiology, 2007, 103, 1838-1844.	3.1	22
294	Contributions to selected phenotypic characteristics of large species- and lineage-specific genomic regions in Listeria monocytogenes. Food Microbiology, 2009, 26, 212-223.	4.2	22
295	Effect of Curing Method and Freeze-Thawing on Subsequent Growth of Listeria monocytogenes on Cold-Smoked Salmon. Journal of Food Protection, 2012, 75, 1619-1626.	1.7	22
296	The Listeria monocytogenes strain 10403S BioCyc database. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	3.0	22
297	A proposed new bacteriophage subfamily: "Jerseyvirinae― Archives of Virology, 2015, 160, 1021-1033.	2.1	22
298	Genomics tools in microbial food safety. Current Opinion in Food Science, 2015, 4, 105-110.	8.0	22
299	Evaluation of biopreservatives in Greek yogurt to inhibit yeast and mold spoilage and development of a yogurt spoilage predictive model. Journal of Dairy Science, 2018, 101, 10759-10774.	3.4	22
300	The Listeria monocytogenes Bile Stimulon under Acidic Conditions Is Characterized by Strain-Specific Patterns and the Upregulation of Motility, Cell Wall Modification Functions, and the PrfA Regulon. Frontiers in Microbiology, 2018, 9, 120.	3.5	22
301	Predictive Models May Complement or Provide an Alternative to Existing Strategies for Assessing the Enteric Pathogen Contamination Status of Northeastern Streams Used to Provide Water for Produce Production. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	22
302	All food processes have a residual risk, some are small, some very small and some are extremely small: zero risk does not exist. Current Opinion in Food Science, 2021, 39, 83-92.	8.0	22
303	Assessment of Listeria monocytogenes virulence in the Galleria mellonella insect larvae model. PLoS ONE, 2017, 12, e0184557.	2.5	22
304	Use of plasmid profiling as a typing method for epidemiologically related Clostridium perfringens isolates from food poisoning cases and outbreaks. Letters in Applied Microbiology, 1995, 20, 290-294.	2.2	21
305	Associations amongListeria monocytogenesgenotypes and distinct clinical manifestations of listeriosis in cattle. American Journal of Veterinary Research, 2006, 67, 616-626.	0.6	21
306	Assessment Criteria and Approaches for Rapid Detection Methods To Be Used in the Food Industry. Journal of Food Protection, 2014, 77, 670-690.	1.7	21

#	Article	IF	CITATIONS
307	Optimization of combinations of bactericidal and bacteriostatic treatments to control Listeria monocytogenes on cold-smoked salmon. International Journal of Food Microbiology, 2014, 179, 1-9.	4.7	21
308	Rapid detection and characterization of postpasteurization contaminants in pasteurized fluid milk. Journal of Dairy Science, 2018, 101, 7746-7756.	3.4	21
309	DNA Extraction and Host Depletion Methods Significantly Impact and Potentially Bias Bacterial Detection in a Biological Fluid. MSystems, 2021, 6, e0061921.	3.8	21
310	Detection and Prevalence of Listeria in U.S. Produce Packinghouses and Fresh-Cut Facilities. Journal of Food Protection, 2020, 83, 1656-1666.	1.7	21
311	Novel Method To Identify Source-Associated Phylogenetic Clustering Shows that Listeria monocytogenes Includes Niche-Adapted Clonal Groups with Distinct Ecological Preferences. Journal of Clinical Microbiology, 2006, 44, 3742-3751.	3.9	20
312	Consensus categorization of cheese based on water activity and pH—A rational approach to systemizing cheese diversity. Journal of Dairy Science, 2017, 100, 841-847.	3.4	20
313	A century of gray: A genomic locus found in 2 distinct Pseudomonas spp. is associated with historical and contemporary color defects in dairy products worldwide. Journal of Dairy Science, 2019, 102, 5979-6000.	3.4	20
314	Serotype-specific evolutionary patterns of antimicrobial-resistant Salmonella enterica. BMC Evolutionary Biology, 2019, 19, 132.	3.2	20
315	Evaluation of real-time nanopore sequencing for Salmonella serotype prediction. Food Microbiology, 2020, 89, 103452.	4.2	20
316	RecurrentListeria monocytogenesInfection: Relapse or Reinfection with a Unique Strain Confirmed by Molecular Subtyping. Clinical Infectious Diseases, 2001, 33, 257-259.	5.8	19
317	Transmission Dynamics of a Multidrug-Resistant <i>Salmonella</i> Typhimurium Outbreak in a Dairy Farm. Foodborne Pathogens and Disease, 2010, 7, 467-474.	1.8	19
318	Salmonella Cerro isolated over the past twenty years from various sources in the US represent a single predominant pulsed-field gel electrophoresis type. Veterinary Microbiology, 2011, 150, 389-393.	1.9	19
319	Genomic characterization of Salmonella Cerro ST367, an emerging Salmonella subtype in cattle in the United States. BMC Genomics, 2014, 15, 427.	2.8	19
320	Dynamic Duo—The Salmonella Cytolethal Distending Toxin Combines ADP-Ribosyltransferase and Nuclease Activities in a Novel Form of the Cytolethal Distending Toxin. Toxins, 2016, 8, 121.	3.4	19
321	Exposure of fluid milk to LED light negatively affects consumer perception and alters underlying sensory properties. Journal of Dairy Science, 2016, 99, 4309-4324.	3.4	19
322	Quantifying human impact on Earth's microbiome. Nature Microbiology, 2016, 1, 16145.	13.3	19
323	Stochastic and Differential Activation of ÏfB and PrfA in Listeria monocytogenes at the Single Cell Level under Different Environmental Stress Conditions. Frontiers in Microbiology, 2017, 8, 348.	3.5	19
324	Nevertheless, She Resisted – Role of the Environment on Listeria monocytogenes Sensitivity to Nisin Treatment in a Laboratory Cheese Model. Frontiers in Microbiology, 2020, 11, 635.	3.5	19

#	Article	IF	CITATIONS
325	Markov chain approach to analyze the dynamics of pathogen fecal shedding—Example of Listeria monocytogenes shedding in a herd of dairy cattle. Journal of Theoretical Biology, 2007, 245, 44-58.	1.7	18
326	Use of multipleâ€locus variable number tandem repeat analysis and phage typing for subtyping of <i>Salmonella</i> Enteritidis from sporadic human cases in the United States. Journal of Applied Microbiology, 2010, 108, 859-867.	3.1	18
327	Applications of DNA amplification techniques in veterinary diagnostics. Veterinary Research Communications, 1995, 19, 375-407.	1.6	17
328	An advanced bioinformatics approach for analyzing RNA-seq data reveals sigma H-dependent regulation of competence genes in Listeria monocytogenes. BMC Genomics, 2016, 17, 115.	2.8	17
329	Assembly and Characterization of a Pathogen Strain Collection for Produce Safety Applications: Pre-growth Conditions Have a Larger Effect on Peroxyacetic Acid Tolerance Than Strain Diversity. Frontiers in Microbiology, 2019, 10, 1223.	3.5	17
330	Environmental conditions and serotype affect Listeria monocytogenes susceptibility to phage treatment in a laboratory cheese model. Journal of Dairy Science, 2019, 102, 9674-9688.	3.4	17
331	Effect of Weather on the Die-Off of Escherichia coli and Attenuated Salmonella enterica Serovar Typhimurium on Preharvest Leafy Greens following Irrigation with Contaminated Water. Applied and Environmental Microbiology, 2020, 86, .	3.1	17
332	Food Safety and Employee Health Implications of COVID-19: A Review. Journal of Food Protection, 2021, 84, 1973-1989.	1.7	17
333	Detection and Characterization of Listeria monocytogenes in São Jorge (Portugal) Cheese Production. Journal of Dairy Science, 2006, 89, 4456-4461.	3.4	16
334	Multidrug-ResistantSalmonellaTyphimurium, Pacific Northwest, United States. Emerging Infectious Diseases, 2007, 13, 1583-1586.	4.3	16
335	Validation of the 3M Molecular Detection System for the Detection of Listeria in Meat, Seafood, Dairy, and Retail Environments. Journal of Food Protection, 2013, 76, 874-878.	1.7	16
336	Bedding and bedding management practices are associated with mesophilic and thermophilic spore levels in bulk tank raw milk. Journal of Dairy Science, 2019, 102, 6885-6900.	3.4	16
337	Recent Evolution and Genomic Profile of Salmonella enterica Serovar Heidelberg Isolates from Poultry Flocks in Brazil. Applied and Environmental Microbiology, 2021, 87, e0103621.	3.1	16
338	Longitudinal assessment of dairy farm management practices associated with the presence of psychrotolerant Bacillales spores in bulk tank milk on 10 New York State dairy farms. Journal of Dairy Science, 2017, 100, 8783-8795.	3.4	15
339	Development of a Monte Carlo simulation model to predict pasteurized fluid milk spoilage due to post-pasteurization contamination with gram-negative bacteria. Journal of Dairy Science, 2022, 105, 1978-1998.	3.4	15
340	Interpretability Versus Accuracy: A Comparison of Machine Learning Models Built Using Different Algorithms, Performance Measures, and Features to Predict E. coli Levels in Agricultural Water. Frontiers in Artificial Intelligence, 2021, 4, 628441.	3.4	14
341	Phylogeny and functional conservation of σE in endospore-forming bacteria The GenBank accession numbers for the sequences determined in this work are AF225461–AF225466 Microbiology (United) Tj ETQq1	1.0 .7843	1 1 4rgBT /0\
342	Clostridium tepidum sp. nov., a close relative of Clostridium sporogenes and Clostridium botulinum Group I. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 2317-2322.	1.7	14

#	Article	IF	CITATIONS
343	Milking time hygiene interventions on dairy farms reduce spore counts in raw milk. Journal of Dairy Science, 2020, 103, 4088-4099.	3.4	14
344	Evaluation of invA Diversity among Salmonella Species Suggests Why Some Commercially Available Rapid Detection Kits May Fail To Detect Multiple Salmonella Subspecies and Species. Journal of Food Protection, 2019, 82, 710-717.	1.7	13
345	An Assessment of Listeriosis Risk Associated with a Contaminated Production Lot of Frozen Vegetables Consumed Under Alternative Consumer Handling Scenarios. Journal of Food Protection, 2019, 82, 2174-2193.	1.7	13
346	Environmental Reservoir and Transmission into the Mammalian Host. , 2007, , 111-137.		12
347	Contributions of Six Lineage-Specific Internalin-Like Genes to Invasion Efficiency ofListeria monocytogenes. Foodborne Pathogens and Disease, 2009, 6, 57-70.	1.8	12
348	The Combination of Lactate and Diacetate Synergistically Reduces Cold Growth in Brain Heart Infusion Broth across Listeria monocytogenes Lineages. Journal of Food Protection, 2010, 73, 631-640.	1.7	12
349	Temporal Clusters of Bovine <i>Salmonella</i> Cases at a Veterinary Medical Teaching Hospital, 1996–2007. Vector-Borne and Zoonotic Diseases, 2010, 10, 471-479.	1.5	12
350	Molecular ecology ofListeriaspp.,Salmonella, Escherichia coliO157:H7 and non-O157 Shiga toxin-producingE.Âcoliin pristine natural environments in Northern Colorado. Journal of Applied Microbiology, 2018, 124, 511-521.	3.1	12
351	Comparative genomics reveals different population structures associated with host and geographic origin in antimicrobialâ€resistant <scp><i>Salmonella enterica</i></scp> . Environmental Microbiology, 2020, 22, 2811-2828.	3.8	12
352	Antibiotic Resistance in Shiga Toxigenic Escherichia coli Isolates from Surface Waters and Sediments in a Mixed Use Urban Agricultural Landscape. Antibiotics, 2021, 10, 237.	3.7	12
353	Associations between Listeria monocytogenes genomic characteristics and adhesion to polystyrene at 8°C. Food Microbiology, 2022, 102, 103915.	4.2	12
354	Evaluation of The Pathogenicity ofListeriaspp. inCaenorhabditis elegans. Foodborne Pathogens and Disease, 2007, 4, 67-73.	1.8	11
355	Clinical Features of Human Salmonellosis Caused by Bovine-Associated Subtypes in New York. Foodborne Pathogens and Disease, 2012, 9, 796-802.	1.8	11
356	Complete Genome Sequence of the Porcine Strain Brachyspira pilosicoli P43/6/78 ^T . Genome Announcements, 2013, 1, .	0.8	11
357	Issues To Consider When Setting Intervention Targets with Limited Data for Low-Moisture Food Commodities: A Peanut Case Study. Journal of Food Protection, 2013, 76, 360-369.	1.7	11
358	Spatiotemporal Analysis of Microbiological Contamination in New York State Produce Fields following Extensive Flooding from Hurricane Irene, August 2011. Journal of Food Protection, 2016, 79, 384-391.	1.7	11
359	Short communication: Pseudomonas azotoformans causes gray discoloration in HTST fluid milk. Journal of Dairy Science, 2017, 100, 7906-7909.	3.4	11
360	Interventions designed to control postpasteurization contamination in high-temperature, short-time-pasteurized fluid milk processing facilities: A case study on the effect of employee training, clean-in-place chemical modification, and preventive maintenance programs. Journal of Dairy Science, 2020, 103, 7569-7584.	3.4	11

#	Article	IF	CITATIONS
361	Listeria monocytogenes Prevalence Varies More within Fields Than between Fields or over Time on Conventionally Farmed New York Produce Fields. Journal of Food Protection, 2020, 83, 1958-1966.	1.7	11
362	Characterization ofrpoSalleles inEscherichia coliO157:H7 and in otherE. coliserotypes. Journal of Applied Microbiology, 1999, 86, 295-301.	3.1	10
363	International Life Science Institute North America Cronobacter (Formerly Enterobacter sakazakii) Isolate Set. Journal of Food Protection, 2013, 76, 40-51.	1.7	10
364	Fluoro-Phenyl-Styrene-Sulfonamide, a Novel Inhibitor of σ ^B Activity, Prevents the Activation of σ ^B by Environmental and Energy Stresses in Bacillus subtilis. Journal of Bacteriology, 2013, 195, 2509-2517.	2.2	10
365	Evaluation of Rapid Molecular Detection Assays for Salmonella in Challenging Food Matrices at Low Inoculation Levels and Using Difficult-to-Detect Strains. Journal of Food Protection, 2015, 78, 1632-1641.	1.7	10
366	Twentieth-century emergence of antimicrobial resistant human- and bovine-associated Salmonella enterica serotype Typhimurium lineages in New York State. Scientific Reports, 2020, 10, 14428.	3.3	10
367	The Majority of Typhoid Toxin-Positive <i>Salmonella</i> Serovars Encode ArtB, an Alternate Binding Subunit. MSphere, 2021, 6, .	2.9	10
368	Monitoring the Microevolution of Salmonella enterica in Healthy Dairy Cattle Populations at the Individual Farm Level Using Whole-Genome Sequencing. Frontiers in Microbiology, 2021, 12, 763669.	3.5	10
369	Detection of bovine leukocyte adhesion deficiency by nonisotopic ligase chain reaction. Animal Genetics, 0, 25, 95-98.	1.7	9
370	Clonal Clustering Using 10-Gene Multilocus Sequence Typing Reveals an Association Between Genotype and <i>Listeria monocytogenes</i> Maximum Growth Rate in Defined Medium. Foodborne Pathogens and Disease, 2015, 12, 972-982.	1.8	9
371	Pre-growth conditions and strain diversity affect nisin treatment efficacy against Listeria monocytogenes on cold-smoked salmon. International Journal of Food Microbiology, 2020, 333, 108793.	4.7	9
372	Short communication: Coliform Petrifilm as an alternative method for detecting total gram-negative bacteria in fluid milk. Journal of Dairy Science, 2020, 103, 5043-5046.	3.4	9
373	Paenibacillus odorifer, the Predominant <i>Paenibacillus</i> Species Isolated from Milk in the United States, Demonstrates Genetic and Phenotypic Conservation of Psychrotolerance but Clade-Associated Differences in Nitrogen Metabolic Pathways. MSphere, 2020, 5, .	2.9	9
374	Comparison of Resampling Algorithms to Address Class Imbalance when Developing Machine Learning Models to Predict Foodborne Pathogen Presence in Agricultural Water. Frontiers in Environmental Science, 2021, 9, .	3.3	9
375	Small Produce Farm Environments Can Harbor Diverse Listeria monocytogenes and Listeria spp. Populations. Journal of Food Protection, 2021, 84, 113-121.	1.7	9
376	Development of a risk assessment model to predict the occurrence of late blowing defect in Gouda cheese and evaluate potential intervention strategies. Journal of Dairy Science, 2022, 105, 2880-2894.	3.4	9
377	Soil Collected in the Great Smoky Mountains National Park Yielded a Novel <i>Listeria sensu stricto</i> Species, <i>L. swaminathanii</i> . Microbiology Spectrum, 2022, 10, .	3.0	9
378	A ligase chain reaction targeting two adjacent nucleotides allows the differentiation of cowpox virus from other Orthopoxvirus species. Journal of Virological Methods, 1994, 49, 353-360.	2.1	8

#	Article	IF	CITATIONS
379	Ribotype diversity ofListeria monocytogenesisolates from two salmon processing plants in Norway. International Journal of Environmental Health Research, 2006, 16, 375-383.	2.7	8
380	Growth Temperature-Dependent Contributions of Response Regulators, σ ^B , PrfA, and Motility Factors to <i>Listeria monocytogenes</i> Invasion of Caco-2 Cells. Foodborne Pathogens and Disease, 2010, 7, 1337-1349.	1.8	8
381	Phosphotransferase System-Dependent Extracellular Growth of Listeria monocytogenes Is Regulated by Alternative Sigma Factors Ïf ^L and Ïf ^H . Applied and Environmental Microbiology, 2014, 80, 7673-7682.	3.1	8
382	Backyard Farms Represent a Source of Wide Host Range Salmonella Phages That Lysed the Most Common Salmonella Serovars. Journal of Food Protection, 2018, 81, 272-278.	1.7	8
383	Assessment of Reference Method Selective Broth and Plating Media with 19 Listeria Species Highlights the Importance of Including Diverse Species in Listeria Method Evaluations. Journal of Food Protection, 2022, 85, 494-510.	1.7	8
384	Characterization of <i>Listeria monocytogenes</i> isolated from wildlife in central New York. Veterinary Medicine and Science, 2022, 8, 1319-1329.	1.6	8
385	A 10‥ear Review of the Food Science Summer Scholars Program: A Model for Research Training and for Recruiting Undergraduate Students into Graduate Programs and Careers in Food Science. Journal of Food Science Education, 2010, 9, 98-105.	1.0	7
386	ÏfB Plays a Limited Role in the Ability of Listeria monocytogenes Strain F2365 To Survive Oxidative and Acid Stress and in Its Virulence Characteristics. Journal of Food Protection, 2013, 76, 2079-2086.	1.7	7
387	Antimicrobial Drug Resistance Patterns among Cattle- and Human-Associated Salmonella Strains. Journal of Food Protection, 2013, 76, 1676-1688.	1.7	7
388	Responding to Bioterror Concerns by Increasing Milk Pasteurization Temperature Would Increase Estimated Annual Deaths from Listeriosis. Journal of Food Protection, 2014, 77, 696-705.	1.7	7
389	Classification of <i>Listeria monocytogenes</i> Persistence in Retail Delicatessen Environments Using Expert Elicitation and Machine Learning. Risk Analysis, 2014, 34, 1830-1845.	2.7	7
390	Starting from the bench—Prevention and control of foodborne and zoonotic diseases. Preventive Veterinary Medicine, 2015, 118, 189-195.	1.9	7
391	A Conceptual Framework for Developing Recommendations for No-Harvest Buffers around In-Field Feces. Journal of Food Protection, 2019, 82, 1052-1060.	1.7	7
392	Machine Learning and Advanced Statistical Modeling Can Identify Key Quality Management Practices That Affect Postpasteurization Contamination of Fluid Milk. Journal of Food Protection, 2021, 84, 1496-1511.	1.7	7
393	Evaluation of Salmonella Serotype Prediction With Multiplex Nanopore Sequencing. Frontiers in Microbiology, 2021, 12, 637771.	3.5	7
394	Identification, subtyping, and tracking of dairy spoilage-associated Pseudomonas by sequencing the ileS gene. Journal of Dairy Science, 2021, 104, 2668-2683.	3.4	7
395	Moving Past Species Classifications for Risk-Based Approaches to Food Safety: Salmonella as a Case Study. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	7
396	<i>In Silico</i> Models for Design and Optimization of Science-Based <i>Listeria</i> Environmental Monitoring Programs in Fresh-Cut Produce Facilities. Applied and Environmental Microbiology, 2021, 87, e0079921.	3.1	7

#	Article	IF	CITATIONS
397	Nonsynonymous Mutations in <1>fepR 1 Are Associated with Adaptation of Listeria monocytogenes and Other <i>Listeria</i> spp. to Low Concentrations of Benzalkonium Chloride but Do Not Increase Survival of L. monocytogenes and Other <i>Listeria</i> spp. after Exposure to Benzalkonium Chloride Concentrations Recommended for Use in Food Processing Environments. Applied and Environmental	3.1	7
398	Genes Associated With Psychrotolerant Bacillus cereus Group Isolates. Frontiers in Microbiology, 2019, 10, 662.	3.5	6
399	Nature versus Nurture: Assessing the Impact of Strain Diversity and Pregrowth Conditions on Salmonella enterica, Escherichia coli, and <i>Listeria</i> Species Growth and Survival on Selected Produce Items. Applied and Environmental Microbiology, 2021, 87, .	3.1	6
400	Identification of Closely Related Listeria monocytogenes Isolates with No Apparent Evidence for a Common Source or Location: A Retrospective Whole Genome Sequencing Analysis. Journal of Food Protection, 2021, 84, 1104-1113.	1.7	6
401	Integrative Survey of 68 Non-overlapping Upstate New York Watersheds Reveals Stream Features Associated With Aquatic Fecal Contamination. Frontiers in Microbiology, 2021, 12, 684533.	3.5	6
402	Development of predictive models evaluating the spoilage-delaying effect of a bioprotective culture on different yeast species in yogurt. Journal of Dairy Science, 2021, 104, 9570-9582.	3.4	6
403	Using agent-based modeling to compare corrective actions for Listeria contamination in produce packinghouses. PLoS ONE, 2022, 17, e0265251.	2.5	6
404	Detection of Listeria monocytogenes in surface swabs using a non-radioactive polymerase chain reaction-coupled ligase chain reaction assay. Food Microbiology, 1995, 12, 151-157.	4.2	5
405	Fecal shedding of, antimicrobial resistance in, and serologic response toSalmonellaTyphimurium in dairy calves. Journal of the American Veterinary Medical Association, 2009, 235, 739-748.	0.5	5
406	Adjacent Terrestrial Landscapes Impact the Biogeographical Pattern of Soil Escherichia coli Strains in Produce Fields by Modifying the Importance of Environmental Selection and Dispersal. Applied and Environmental Microbiology, 2021, 87, .	3.1	5
407	Recent Advances in Our Understanding of the Diversity and Roles of Chaperone-Usher Fimbriae in Facilitating Salmonella Host and Tissue Tropism. Frontiers in Cellular and Infection Microbiology, 2020, 10, 628043.	3.9	5
408	Optimizing Pasteurized Fluid Milk Shelf-Life Through Microbial Spoilage Reduction. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	5
409	Development of a Genomics-Based Approach To Identify Putative Hypervirulent Nontyphoidal Salmonella Isolates: Salmonella enterica Serovar Saintpaul as a Model. MSphere, 2022, 7, e0073021.	2.9	5
410	Plasmid Profiling for Strain Differentiation and Characterization of Clostridium perfringens Isolates. Zoonoses and Public Health, 1996, 43, 137-146.	1.4	4
411	Detection of bovine leukocyte adhesion deficiency by nonisotopic ligase chain reaction. Animal Genetics, 1994, 25, 95-98.	1.7	4
412	Pre-Harvest Survival and Post-Harvest Chlorine Tolerance of Enterohemorrhagic Escherichia coli on Lettuce. Toxins, 2019, 11, 675.	3.4	4
413	Cross-Validation Indicates Predictive Models May Provide an Alternative to Indicator Organism Monitoring for Evaluating Pathogen Presence in Southwestern US Agricultural Water. Frontiers in Water, 2021, 3, .	2.3	4
414	Characterization of Basal Transcriptomes Identifies Potential Metabolic and Virulence-Associated Adaptations Among Diverse Nontyphoidal Salmonella enterica Serovars. Frontiers in Microbiology, 2021, 12, 730411.	3.5	4

#	Article	IF	CITATIONS
415	Development of a database and standardized approach for rpoB sequence-based subtyping and identification of aerobic spore-forming Bacillales. Journal of Microbiological Methods, 2021, 191, 106350.	1.6	4
416	Development of a Modeling Tool To Assess and Reduce Regulatory and Recall Risks for Cold-Smoked Salmon Due to Listeria monocytogenes Contamination. Journal of Food Protection, 2022, 85, 1335-1354.	1.7	4
417	Extreme value theory in analysis of differential expression in microarrays where either only up- or down-regulated genes are relevant or expected. Genetical Research, 2008, 90, 347-361.	0.9	3
418	Complementation of <i>Listeria monocytogenes</i> Null Mutants with Selected <i>Listeria seeligeri</i> Virulence Genes Suggests Functional Adaptation of Hly and PrfA and Considerable Diversification of <i>prfA</i> Regulation in <i>L. seeligeri</i> . Applied and Environmental Microbiology, 2010, 76, 5124-5139.	3.1	3
419	Development and Evaluation of Food Safety Modules for Kâ€12 Science Education. Journal of Food Science Education, 2015, 14, 48-53.	1.0	3
420	Development and Evaluation of a Multiâ€Institutional Case Studiesâ€Based Course in Food Safety. Journal of Food Science Education, 2015, 14, 76-85.	1.0	3
421	Short communication: Postpasteurization hold temperatures of 4 or 6°C, but not raw milk holding of 24 or 72 hours, affect bacterial outgrowth in pasteurized fluid milk. Journal of Dairy Science, 2015, 98, 7640-7643.	3.4	3
422	Internal transcribed spacer (ITS) sequence-based characterization of fungal isolates from multiple yogurt facilities—A case study. Journal of Dairy Science, 2019, 102, 3646-3653.	3.4	3
423	Transcriptional profiling of the <i>L. monocytogenes</i> PrfA regulon identifies six novel putative PrfA-regulated genes. FEMS Microbiology Letters, 2020, 367, .	1.8	3
424	Characterization of the roles of activated charcoal and Chelex in the induction of PrfA regulon expression in complex medium. PLoS ONE, 2021, 16, e0250989.	2.5	3
425	Phylogeographic Clustering Suggests that Distinct Clades of Salmonella enterica Serovar Mississippi Are Endemic in Australia, the United Kingdom, and the United States. MSphere, 2021, 6, e0048521.	2.9	3
426	DISEASES OF DAIRY ANIMALS, INFECTIOUS Listeriosis. , 2002, , 777-782.		3
427	Validation Using Diverse, Difficult-to-Detect Salmonella Strains and a Dark Chocolate Matrix Highlights the Critical Role of Strain Selection for Evaluation of Simplified, Rapid PCR-Based Methods Offering Next-Day Time to Results. Journal of Food Protection, 2020, 83, 1374-1386.	1.7	3
428	Epidemiology of Listeriosis. , 0, , 221-232.		3
429	Detection of bovine leukocyte adhesion deficiency by nonisotopic ligase chain reaction. Animal Genetics, 1994, 25, 95-8.	1.7	3
430	Strain Differentiation of <i>Clostridium perfringens</i> by Bacteriocin Typing, Plasmid Profiling and Ribotyping. Zoonoses and Public Health, 1998, 45, 595-602.	1.4	2
431	How University Researchers Can Contribute to Farm-to-Table Risk Assessments: <i>Listeria monocytogenes</i> as an Example. Foodborne Pathogens and Disease, 2007, 4, 527-537.	1.8	2

432 Spoilage Mold in Dairy Products. , 2022, , 607-610.

#	Article	IF	CITATIONS
433	A standard set of testing methods reliably enumerates spores across commercial milk powders. Journal of Dairy Science, 2021, 104, 2615-2631.	3.4	2
434	Alternative σ Factors Regulate Overlapping as Well as Distinct Stress Response and Metabolic Functions in Listeria monocytogenes under Stationary Phase Stress Condition. Pathogens, 2021, 10, 411.	2.8	2
435	Extended Enrichment Procedures Can Be Used To Define False-Negative Probabilities for Cultural Gold Standard Methods for Salmonella Detection, Facilitating Comparisons between Gold Standard and Alternative Methods. Journal of Food Protection, 2020, 83, 1030-1037.	1.7	2
436	Spore-Forming Bacteria Associated with Dairy Powders Can Be Found in Bacteriological Grade Agar–Agar Supply. Journal of Food Protection, 2020, 83, 2074-2079.	1.7	2
437	The Number and Type of Chaperone-Usher Fimbriae Reflect Phylogenetic Clade Rather than Host Range in Salmonella. MSystems, 2022, 7, e0011522.	3.8	2
438	DEVELOPMENT OF A PCR ASSAY FOR DETECTION OF SPOREâ€FORMING BACTERIA. Journal of Rapid Methods and Automation in Microbiology, 1999, 7, 251-262.	0.4	1
439	Detection and Characterization of Listeria monocytogenes. Journal of AOAC INTERNATIONAL, 2002, 85, 494-494.	1.5	1
440	Optimal levels of inputs to controlListeria monocytogenes contamination at a smoked fish plant. Agribusiness, 2007, 23, 229-244.	3.4	1
441	Master of Professional Studies in Agriculture and Life Sciences offered through the Field of Food Science and Technology at Cornell University: A Model for the Development of a Courseâ€Based Graduate Degree in Food Science and Technology. Journal of Food Science Education, 2015, 14, 10-17.	1.0	1
442	Toward agent-based models for pre-harvest food safety. IBM Journal of Research and Development, 2016, 60, 8:1-8:13.	3.1	1
443	Foodborne Illness Outbreak Investigation Training Needs: A Survey Among State Public Health Staff in the Northeast and Mid-Atlantic United States. Journal of Public Health Management and Practice, 2018, 24, 34-40.	1.4	1
444	Next-Generation Sequencing. , 2019, , 376-383.		1
445	Detection of Listeria monocytogenes by PCR-Coupled Ligase Chain Reaction. , 1995, , 347-361.		1
446	A practical training program for fluid milk defect judging should focus on initial training of panelists. Journal of Dairy Science, 2020, 103, 6716-6726.	3.4	1
447	Growth and survival of aerobic and Gram-negative bacteria on fresh spinach in a Chinese supply chain from harvest through distribution and refrigerated storage. International Journal of Food Microbiology, 2022, 370, 109639.	4.7	1
448	Erratum to "Reduction of pasteurization temperature leads to lower bacterial outgrowth in pasteurized fluid milk during refrigerated storage: A case study―(J. Dairy Sci. 95:471–475). Journal of Dairy Science, 2012, 95, 1585.	3.4	0
449	The Microbial Safety of Minimally Processed Seafood with Respect to Listeria monocytogenes. , 2002, ,		0
450	Hijacking the host cell: foodborne pathogen strategies for reproduction and defense evasion. , 2006, ,		0

450 292-308.

#	Article	IF	CITATIONS
451	Listeria monocytogenes: A challenge for the smoked seafood industry. , 2008, , .		0
452	Overview: The Impact of Microbial Genomics on Food Safety. , 2011, , 1-27.		0
453	Ligase-Mediated Detection Techniques. , 1994, , 83-92.		Ο