
Vaibhav B Patel, Mpharm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/439129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of the ACE2/Angiotensin 1–7 Axis of the Renin–Angiotensin System in Heart Failure. Circulation Research, 2016, 118, 1313-1326.	2.0	664
2	Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: A positive feedback mechanism in the RAS. Journal of Molecular and Cellular Cardiology, 2014, 66, 167-176.	0.9	263
3	ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes, 2016, 65, 85-95.	0.3	193
4	Cardioprotective effect of melatonin against isoproterenol induced myocardial infarction in rats: A biochemical, electrocardiographic and histoarchitectural evaluation. European Journal of Pharmacology, 2010, 644, 160-168.	1.7	186
5	Loss of Apelin Exacerbates Myocardial Infarction Adverse Remodeling and Ischemiaâ€reperfusion Injury: Therapeutic Potential of Synthetic Apelin Analogues. Journal of the American Heart Association, 2013, 2, e000249.	1.6	171
6	Angiotensin 1–7 Ameliorates Diabetic Cardiomyopathy and Diastolic Dysfunction in <i>db/db</i> Mice by Reducing Lipotoxicity and Inflammation. Circulation: Heart Failure, 2014, 7, 327-339.	1.6	158
7	Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Failure Reviews, 2017, 22, 889-902.	1.7	156
8	Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Molecular and Cellular Biochemistry, 2020, 467, 77-94.	1.4	146
9	Loss of Angiotensin-Converting Enzyme-2 Exacerbates Diabetic Cardiovascular Complications and Leads to Systolic and Vascular Dysfunction. Circulation Research, 2012, 110, 1322-1335.	2.0	141
10	Agonist-Induced Hypertrophy and Diastolic Dysfunction Are Associated With Selective Reduction in Glucose Oxidation. Circulation: Heart Failure, 2012, 5, 493-503.	1.6	136
11	Angiotensin 1–7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. American Journal of Physiology - Renal Physiology, 2014, 306, F812-F821.	1.3	113
12	Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63–Integrin β1 Interaction. Hypertension, 2017, 69, 1092-1103.	1.3	108
13	Differential role of TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic dysfunction. Cardiovascular Research, 2014, 103, 268-280.	1.8	98
14	Cardioprotective Effects Mediated by Angiotensin II Type 1 Receptor Blockade and Enhancing Angiotensin 1-7 in Experimental Heart Failure in Angiotensin-Converting Enzyme 2–Null Mice. Hypertension, 2012, 59, 1195-1203.	1.3	97
15	ACE2/Ang 1-7 axis: A critical regulator of epicardial adipose tissue inflammation and cardiac dysfunction in obesity. Adipocyte, 2016, 5, 306-311.	1.3	90
16	Iron-overload injury and cardiomyopathy in acquired and genetic models is attenuated by resveratrol therapy. Scientific Reports, 2015, 5, 18132.	1.6	85
17	Angiotensin-Converting Enzyme 2 Is a Critical Determinant of Angiotensin II–Induced Loss of Vascular Smooth Muscle Cells and Adverse Vascular Remodeling. Hypertension, 2014, 64, 157-164.	1.3	81
18	Role of angiotensin-converting enzyme 2 (ACE2) in diabetic cardiovascular complications. Clinical Science, 2014, 126, 471-482.	1.8	72

#	Article	IF	CITATIONS
19	Role of ACE2 in diastolic and systolic heart failure. Heart Failure Reviews, 2012, 17, 683-691.	1.7	63
20	Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, <i>in vitro, in situ</i> and <i>in vivo</i> evaluation. Drug Development and Industrial Pharmacy, 2014, 40, 80-91.	0.9	62
21	Angiotensinâ€converting enzyme 2 antagonizes angiotensin IIâ€induced pressor response and NADPH oxidase activation in Wistar–Kyoto rats and spontaneously hypertensive rats. Experimental Physiology, 2013, 98, 109-122.	0.9	56
22	PI3Kα-regulated gelsolin activity is a critical determinant of cardiac cytoskeletal remodeling and heart disease. Nature Communications, 2018, 9, 5390.	5.8	52
23	Loss of p47 ^{phox} Subunit Enhances Susceptibility to Biomechanical Stress and Heart Failure Because of Dysregulation of Cortactin and Actin Filaments. Circulation Research, 2013, 112, 1542-1556.	2.0	51
24	Tomato lycopene attenuates myocardial infarction induced by isoproterenol: Electrocardiographic, biochemical and anti–apoptotic study. Asian Pacific Journal of Tropical Biomedicine, 2012, 2, 345-351.	0.5	48
25	Loss of NOX2 (gp91 <i>phox</i>) prevents oxidative stress and progression to advanced heart failure. Clinical Science, 2014, 127, 331-340.	1.8	45
26	Loss of TIMP3 selectively exacerbates diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2012, 303, F1341-F1352.	1.3	39
27	Recombinant Human ACE2 and the Angiotensin 1-7 Axis as Potential New Therapies for Heart Failure. Canadian Journal of Cardiology, 2017, 33, 943-946.	0.8	39
28	Antagonism of angiotensin 1–7 prevents the therapeutic effects of recombinant human ACE2. Journal of Molecular Medicine, 2015, 93, 1003-1013.	1.7	38
29	A Disintegrin and Metalloprotease-17 Regulates Pressure Overload–Induced Myocardial Hypertrophy and Dysfunction Through Proteolytic Processing of Integrin β1. Hypertension, 2016, 68, 937-948.	1.3	37
30	Murine recombinant angiotensin-converting enzyme 2 attenuates kidney injury in experimentalÂAlport syndrome. Kidney International, 2017, 91, 1347-1361.	2.6	37
31	Heterozygote loss of ACE2 is sufficient to increase the susceptibility to heart disease. Journal of Molecular Medicine, 2014, 92, 847-858.	1.7	34
32	Weight loss enhances cardiac energy metabolism and function in heart failure associated with obesity. Diabetes, Obesity and Metabolism, 2019, 21, 1944-1955.	2.2	31
33	Perivascular adipose tissue dysfunction aggravates adventitial remodeling in obese mini pigs via NLRP3 inflammasome/IL-1 signaling pathway. Acta Pharmacologica Sinica, 2019, 40, 46-54.	2.8	30
34	Targeting angiotensin-converting enzyme 2 as a new therapeutic target for cardiovascular diseases. Canadian Journal of Physiology and Pharmacology, 2014, 92, 558-565.	0.7	29
35	Females Are Protected From Ironâ€Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress. Journal of the American Heart Association, 2017, 6, .	1.6	29
36	Targeting the ACE2 and Apelin Pathways Are Novel Therapies for Heart Failure: Opportunities and Challenges. Cardiology Research and Practice, 2012, 2012, 1-11.	0.5	24

VAIBHAV B PATEL, MPHARM

#	Article	IF	CITATIONS
37	Exosomes in Cardiovascular Diseases: Pathological Potential of Nano-Messenger. Frontiers in Cardiovascular Medicine, 2021, 8, 767488.	1.1	24
38	Microâ€environment and intracellular metabolism modulation of adipose tissue macrophage polarization in relation to chronic inflammatory diseases. Diabetes/Metabolism Research and Reviews, 2018, 34, e2993.	1.7	20
39	Doxorubicin mediated cardiotoxicity in rats: Protective role of felodipine on cardiac indices. Environmental Toxicology and Pharmacology, 2013, 36, 787-795.	2.0	18
40	TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H978-H990.	1.5	18
41	Protective effect of <i>Clerodendron glandulosum</i> extract against experimentally induced metabolic syndrome in rats. Pharmaceutical Biology, 2010, 48, 1312-1319.	1.3	16
42	PI3Kα is essential for the recovery from Cre/tamoxifen cardiotoxicity and in myocardial insulin signalling but is not required for normal myocardial contractility in the adult heart. Cardiovascular Research, 2015, 105, 292-303.	1.8	16
43	Antihyperlipidemic potential of a polyherbal preparation on triton WR 1339 (Tyloxapol) induced hyperlipidemia: A comparison with lovastatin. International Journal of Green Pharmacy, 2009, 3, 119.	0.1	15
44	PI3Kα Pathway Inhibition With Doxorubicin Treatment Results in Distinct Biventricular Atrophy and Remodeling With Right Ventricular Dysfunction. Journal of the American Heart Association, 2019, 8, e010961.	1.6	15
45	Cardioprotective and antihypertensive effects of <i>Enicostemma littorale</i> Blume extract in fructose-fed rats. Canadian Journal of Physiology and Pharmacology, 2012, 90, 1065-1073.	0.7	11
46	Advanced iron-overload cardiomyopathy in a genetic murine model is rescued by resveratrol therapy. Bioscience Reports, 2018, 38, .	1.1	11
47	Potential role of epicardial adipose tissue in coronary artery endothelial cell dysfunction in type 2 diabetes. FASEB Journal, 2021, 35, e21878.	0.2	11
48	Adventitial Fibroblasts in Aortic Aneurysm: Unraveling Pathogenic Contributions to Vascular Disease. Diagnostics, 2022, 12, 871.	1.3	11
49	The protective effect of <i>Tinospora cordifolia</i> on various mast cell mediated allergic reactions. Pharmaceutical Biology, 2009, 47, 1096-1106.	1.3	10
50	Response to Comment on Patel et al. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes 2016;65:85–95. Diabetes, 2016, 65, e3-e4.	0.3	10
51	Dual loss of PI3Kα and PI3KÎ ³ signaling leads to an age-dependent cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2014, 77, 155-159.	0.9	9
52	Oreocnide integrifolia (Gaud.) Miq leaf water extract improves metabolic alterations in high fructose fed insulin resistant and hypertensive rats. European Journal of Integrative Medicine, 2010, 2, 79-87.	0.8	8
53	Hydrogen sulfide: an old gas with new cardioprotective effects. Clinical Science, 2015, 128, 321-323.	1.8	8
54	Proteomic Analysis Suggests Altered Mitochondrial Metabolic Profile Associated With Diabetic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2022, 9, 791700.	1.1	7

#	Article	IF	CITATIONS
55	Low altitude simulation without hypoxia improves left ventricular function after myocardial infarction by reducing ventricular afterload. PLoS ONE, 2019, 14, e0215814.	1.1	6
56	Manipulating angiotensin metabolism with angiotensin converting enzyme 2 (ACE2) in heart failure. Drug Discovery Today: Therapeutic Strategies, 2012, 9, e141-e148.	0.5	4
57	Beneficial Effects of Grape Resveratrol on Serum Adiponectin and Inflammation: Clinical Trial in Patients with Stable Coronary Artery Disease. Cardiovascular Drugs and Therapy, 2013, 27, 1-4.	1.3	4
58	Regulators of G-Protein Signaling 10 and Heart Failure. Hypertension, 2016, 67, 38-40.	1.3	2
59	Cardioprotective Effects of Angiotensin 1â€7 in Heart Failure with Preserved Ejection Fraction (HFpEF). FASEB Journal, 2021, 35, .	0.2	1
60	Commentary: Cell therapy goes subcellular. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, e386-e387.	0.4	1
61	The ACE2/Ang (1–7) Pathway in Cardiac Remodeling Due to Pressure Overload. , 2013, , 127-139.		0
62	Caloric restriction limits fatty acid oxidation and improves cardiac function in heart failure associated with obesity. Journal of Molecular and Cellular Cardiology, 2018, 124, 99.	0.9	0
63	Proteomic Analysis Suggests Altered Mitochondrial Metabolic Profile in Diabetic Cardiomyopathy. FASEB Journal, 2021, 35, .	0.2	0
64	Paracrine Effects of Perivascular Adipose Tissue on Atherogenesis: Role of Extracellular Vesiclesâ€Mediated Intercellular Communications. FASEB Journal, 2021, 35, .	0.2	0
65	The Role of Neurohumoral Activation in Cardiac Fibrosis and Heart Failure. , 2015, , 347-381.		0
66	Medial Collagen Type and Quantity Influence Mechanical Properties of Aneurysm Wall in Bicuspid Aortic Valve Patients. Frontiers in Mechanical Engineering, 0, 8, .	0.8	0