Xiao-Xi Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/439109/publications.pdf

Version: 2024-02-01

126858 133188 4,439 184 33 59 h-index citations g-index papers 186 186 186 3469 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nonreciprocal dynamics of ferrimagnetic bimerons. Physical Review B, 2022, 105, .	1.1	7
2	Generation and manipulation of skyrmions and other topological spin structures with rare metals. Rare Metals, 2022, 41, 2200-2216.	3.6	24
3	Controlled Switching of the Number of Skyrmions in a Magnetic Nanodot by Electric Fields. Advanced Materials, 2022, 34, e2107908.	11.1	19
4	Controlled Switching of the Number of Skyrmions in a Magnetic Nanodot by Electric Fields (Adv.) Tj ETQq0 0 0 r	gBT/Overl	ock 10 Tf 50 6
5	Domain wall memory: Physics, materials, and devices. Physics Reports, 2022, 958, 1-35.	10.3	56
6	Single-bit full adder and logic gate based on synthetic antiferromagnetic bilayer skyrmions. Rare Metals, 2022, 41, 2249-2258.	3.6	6
7	Structural transition of skyrmion quasiparticles under compression. Physical Review B, 2022, 105, .	1.1	5
8	Bifurcation of a topological skyrmion string. Physical Review B, 2022, 105, .	1.1	14
9	A frustrated bimeronium: Static structure and dynamics. Applied Physics Letters, 2021, 118, .	1.5	13
10	Self-Assembled Hexagonal Superparamagnetic Cone Structures for Fabrication of Cell Cluster Arrays. ACS Applied Materials & District Samp; Interfaces, 2021, 13, 10667-10673.	4.0	3
11	Néel-type skyrmions and their current-induced motion in van der Waals ferromagnet-based heterostructures. Physical Review B, 2021, 103, .	1.1	110
12	Ultrathin Conformal Magnetic Invisible Cloak for Irregular Objects. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17104-17109.	4.0	8
13	Current-induced dynamics of skyrmion tubes in synthetic antiferromagnetic multilayers. Physical Review B, 2021, 103, .	1.1	16
14	Confinement and Protection of Skyrmions by Patterns of Modified Magnetic Properties. Nano Letters, 2021, 21, 4320-4326.	4.5	32
15	Logic Gates Based on Synthetic Antiferromagnetic Bilayer Skyrmions. Physical Review Applied, 2021, 16, .	1.5	19
16	Transcription and logic operations of magnetic skyrmions in bilayer cross structures. Journal of Physics Condensed Matter, 2021, 33, 404001.	0.7	3
17	Antiferromagnetic skyrmion-based logic gates controlled by electric currents and fields. Applied Physics Letters, 2021, 119, .	1.5	40
18	Conventional applications of skyrmions. , 2021, , 367-391.		0

#	Article	lF	Citations
19	Dynamics of ferrimagnetic skyrmionium driven by spin-orbit torque. Physical Review B, 2021, 104, .	1.1	12
20	Configurable pixelated skyrmions on nanoscale magnetic grids. Communications Physics, 2021, 4, .	2.0	14
21	Dynamic transformation between a skyrmion string and a bimeron string in a layered frustrated system. Physical Review B, 2021, 104, .	1.1	7
22	Dynamics of antiskyrmions induced by the voltage-controlled magnetic anisotropy gradient. Journal of Magnetism and Magnetic Materials, 2020, 496, 165922.	1.0	14
23	Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. Journal of Physics Condensed Matter, 2020, 32, 143001.	0.7	268
24	Currentâ€Induced Helicity Reversal of a Single Skyrmionic Bubble Chain in a Nanostructured Frustrated Magnet. Advanced Materials, 2020, 32, e1904815.	11.1	47
25	Single-Crystal-like Textured Growth of CoFe ₂ O ₄ Thin Film on an Amorphous Substrate: A Self-Bilayer Approach. ACS Applied Electronic Materials, 2020, 2, 3650-3657.	2.0	49
26	Current-driven skyrmionium in a frustrated magnetic system. Applied Physics Letters, 2020, 117, .	1.5	22
27	Topology-Dependent Brownian Gyromotion of a Single Skyrmion. Physical Review Letters, 2020, 125, 027206.	2.9	50
28	Current-Induced Dynamics and Chaos of Antiferromagnetic Bimerons. Physical Review Letters, 2020, 124, 037202.	2.9	82
29	Dynamics of an elliptical ferromagnetic skyrmion driven by the spin–orbit torque. Applied Physics Letters, 2020, 116, .	1.5	27
30	Static and dynamic properties of bimerons in a frustrated ferromagnetic monolayer. Physical Review B, 2020, 101, .	1.1	40
31	10.1063/5.0012706.3., 2020,,.		0
32	Au quantum dots engineered room temperature crystallization and magnetic anisotropy in CoFe ₂ O ₄ thin films. Nanoscale Horizons, 2019, 4, 434-444.	4.1	77
33	Spin torque nano-oscillators based on antiferromagnetic skyrmions. Applied Physics Letters, 2019, 114,	1.5	106
34	Realization of Energy Harvesting Based on Stress-Induced Modification of Magnetic Domain Structures in Microwires. IEEE Transactions on Magnetics, 2019, 55, 1-7.	1,2	2
35	Temperature dependence of the microscopic magnetization process of Tb12Co88 using magnetic Compton scattering. Journal of Magnetism and Magnetic Materials, 2019, 484, 207-211.	1.0	4
36	Current-Driven Dynamics of Frustrated Skyrmions in a Synthetic Antiferromagnetic Bilayer. Physical Review Applied, 2019, 11, .	1,5	31

#	Article	IF	CITATIONS
37	Manipulation of magnetic skyrmions in a locally modified synthetic antiferromagnetic racetrack. Journal of Magnetism and Magnetic Materials, 2019, 482, 155-159.	1.0	11
38	Correlation between the Effective Amounts of Elements in TbFeCo Thin Films and Their Magnetic Properties. Materials Transactions, 2019, 60, 718-725.	0.4	4
39	Generation and Hall effect of skyrmions enabled using nonmagnetic point contacts. Physical Review B, 2019, 100, .	1.1	14
40	Voltage-Driven High-Speed Skyrmion Motion in a Skyrmion-Shift Device. Physical Review Applied, 2019, 11, .	1.5	41
41	Nd-Fe-B films with perpendicular magnetic anisotropy and extremely large room temperature coercivity. Journal of Magnetism and Magnetic Materials, 2019, 474, 406-410.	1.0	5
42	Stressâ€Induced Domain Wall Motion in FeCoâ€Based Magnetic Microwires for Realization of Energy Harvesting. Advanced Electronic Materials, 2019, 5, 1800467.	2.6	19
43	Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles. Nano Letters, 2019, 19, 353-361.	4.5	97
44	Nanoscale modification of magnetic properties for effective domain wall pinning. Journal of Magnetism and Magnetic Materials, 2019, 475, 70-75.	1.0	7
45	Dynamics of a magnetic skyrmionium driven by spin waves. Applied Physics Letters, 2018, 112, .	1.5	43
46	Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films. Nature Communications, 2018, 9, 959.	5.8	301
47	Correlation between the Effective Amounts of Elements in TbFeCo Thin Films and Their Magnetic Properties. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2018, 82, 140-146.	0.2	0
48	Vector Hysteresis Modeling of Soft Magnetic Composite by the Improved Preisach Model Considering Anisotropic Characteristic, 2018, , .		0
49	Switching domain wall motion on and off using a gate voltage for domain wall transistor applications. Applied Physics Letters, 2018, 113, 232401.	1.5	6
50	Dynamics of the antiferromagnetic skyrmion induced by a magnetic anisotropy gradient. Physical Review B, 2018, 98, .	1,1	84
51	Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy. Nature Electronics, 2018, 1, 288-296.	13.1	108
52	Dynamics of Magnetic Skyrmion Clusters Driven by Spin-Polarized Current With a Spatially Varied Polarization. IEEE Magnetics Letters, 2018, 9, 1-5.	0.6	6
53	Nanoscale Compositional Modification in Co/Pd Multilayers for Controllable Domain Wall Pinning in Racetrack Memory. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800197.	1.2	28
54	Overview of magnetic skyrmion-based devices and applications. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 137505.	0.2	5

#	Article	IF	Citations
55	Motion of skyrmions in nanowires driven by magnonic momentum-transfer forces. New Journal of Physics, 2017, 19, 065001.	1.2	46
56	A microwave field-driven transistor-like skyrmionic device with the microwave current-assisted skyrmion creation. Journal of Applied Physics, 2017, 122, .	1.1	24
57	Magnetic Compton profile evaluation of magnetization process of Tb _{<i>x</i>} Co _{100â^² <i>x</i>} films. Materials Research Express, 2017, 4, 106108.	0.8	1
58	Tuning magnetic properties for domain wall pinning via localized metal diffusion. Scientific Reports, 2017, 7, 16208.	1.6	26
59	Skyrmion dynamicsÂin a frustrated ferromagnetic filmÂand current-induced helicity locking-unlocking transition. Nature Communications, 2017, 8, 1717.	5.8	147
60	Magnetic Skyrmion Transport in a Nanotrack With Spatially Varying Damping and Non-adiabatic Torque. IEEE Transactions on Magnetics, 2016, , 1-1.	1.2	7
61	Control of the spatial distribution and crystal orientation of self-organized Au nanoparticles. Nanotechnology, 2016, 27, 385605.	1.3	1
62	Control and manipulation of a magnetic skyrmionium in nanostructures. Physical Review B, 2016, 94, .	1.1	137
63	Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Scientific Reports, 2016, 6, 30074.	1.6	148
64	High coercive magnetic force microscopy probes by cobalt ferrite. , 2015, , .		0
65	Co-ferrite thin films with perpendicular magnetic anisotropy. , 2015, , .		O
66	Co-Ferrite Thin Films With Perpendicular Magnetic Anisotropy. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	0
67	$M\tilde{A}\P$ ssbauer spectroscopy, magnetic characteristics, and reflection loss analysis of nickel-strontium substituted cobalt ferrite nanoparticles. Journal of Applied Physics, 2014, 115, .	1.1	13
68	Bi2O3 liquid phase assisted and Mn substituted permeability and magnetic properties of Ni-Cu-Zn ferrite for multilayer chip inductor application. Journal of Applied Physics, 2014, 115, .	1.1	7
69	Role of \${hbox{Bi}}_{2}{hbox{O}}_{3}\$ Additives on the Microstructure Development and Magnetic Properties of NiCuZn-Tb Ferrites. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	9
70	Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho ³⁺ –Mn ²⁺ –Fe ³⁺ –O ^{2â~'} ferromagnetic nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 2347-2357.	. 1.3	134
71	Variations in the saturation magnetization of nanosized NiFe ₂ O ₄ particles on adsorption of carboxylic acids. Journal of Asian Ceramic Societies, 2014, 2, 41-43.	1.0	1
72	Self-assembled ferrite nanodots on multifunctional Au nanoparticles. Gold Bulletin, 2013, 46, 153-159.	1.1	3

#	Article	IF	CITATIONS
73	Magnetic and Reflection Loss Characteristics of SrFe $_{12 - m x}$ (Sm $_{0.5}$ Dy $_{0.5}$) $_{m x}$ Magnetic and Reflection Loss Characteristics of SrFe $_{12 - m x}$ (Sm $_{0.5}$ Dy $_{0.5}$) $_{10.5}$ 0. $_{10.5}$ 0	1.2	11
74	Structural and Magnetic Properties of Mn $^{3+}$ Substituted Ordered and Disordered Li $_{0.5}$ Cr $_{0.5}$ Fe $_{2}$ OS $_{4}$ Nanoparticles. IEEE Transactions on Magnetics, 2013, 49, 4210-4213.	1.2	1
75	Chemical tuning of structure formation and combustion process in CoDy0.1Fe1.9O4 nanoparticles: influence@pH. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	69
76	Observation of magnetic/electric domains and control of electric polarization by magnetic field in BiFeO3/SrFe12O19 bilayers. Journal of Magnetism and Magnetic Materials, 2013, 327, 95-102.	1.0	2
77	Correlation between site preference and magnetic characteristics of self assembled strontium ferrite dot array on functionalized multi-walled carbon nanotubes. Journal of Applied Physics, 2013, 113, 178524.	1.1	7
78	Permeability and magnetic interactions in Co2+ substituted Li0.5Fe2.5O4 alloys. Journal of Alloys and Compounds, 2013, 575, 145-151.	2.8	45
79	Magnetic vortex core for high resolution magnetic force microscopy. , 2013, , .		O
80	Magnetic Properties and Microstructure of Electrodeposited Co/Cu Multilayers. Electrochemistry, 2013, 81, 966-970.	0.6	4
81	Magnetic properties and high-frequency characteristics of FeCoAlO gradient composition thin films. Journal of Applied Physics, 2012, 111, .	1.1	3
82	Domain Wall Pinning Sites Introduced by Focused Ion Beam in TbFeCo Film. IEEE Transactions on Magnetics, 2012, 48, 3658-3661.	1.2	3
83	High frequency characteristics of FeCoAlO thin films fabricated with asymmetric target at different Ar gas flow rates. Journal of Applied Physics, 2012, 111, 07A509.	1.1	3
84	Current Driven Domain Wall Motion in Rare-Earth Transition Metal Alloys with Perpendicular Magnetic Anisotropy. Journal of Nanoscience and Nanotechnology, 2012, 12, 7550-7553.	0.9	5
85	Magnetic Force Microscope Probes With High Resolution by Soft Magnetic Vortex. IEEE Transactions on Magnetics, 2012, 48, 3673-3676.	1.2	3
86	Structural, Microwave, and Magnetic Properties of Self-Assembled Substituted Strontium Ferrite Dot Array on Multiwalled Carbon Nanotubes. IEEE Transactions on Magnetics, 2012, 48, 3474-3477.	1.2	6
87	A comparison between magnetic and reflection loss characteristics of substituted strontium ferrite and nanocomposites of ferrite/carbon nanotubes. Journal of Applied Physics, 2012, 111, .	1,1	48
88	Mössbauer spectroscopy and magnetic characteristics of Zn1â^'xCoxFe2O4 (x = 0â^'1) nanoparticles. Journal of Applied Physics, 2011, 109, 07A512.	1,1	27
89	Enhanced reflection loss characteristics of substituted barium ferrite/functionalized multi-walled carbon nanotube nanocomposites. Journal of Applied Physics, 2011, 109, .	1,1	50
90	High frequency characteristics of FeCoAlO thin films combined the effects of stress and magnetic field. Journal of Applied Physics, 2011, 109, 07B509.	1.1	20

#	Article	IF	CITATIONS
91	Structure and magnetic properties of \hat{l}^3 -Fe ₂ O ₃ -multi walled carbon nanotubes nanocomposites prepared by sol-gel method. Journal of Physics: Conference Series, 2011, 266, 012071.	0.3	1
92	Self-assembled strontium ferrite on Au nano-dot arrays using rapid thermal annealing. Journal of Physics: Conference Series, 2011, 303, 012044.	0.3	1
93	Magnetic properties of $Co < sub > 1\hat{a}$ $x < sub > Ni < sub > x/2 < sub > Sr < sub > x/2 < sub > Fe < sub > 2 < sub > O < sub > 4 < sub > (x = 0\hat{a}$) ferrite nanoparticles synthesized by self-assembling media of reverse micelles. Journal of Physics: Conference Series, 2011, 303, 012089.	0.3	O
94	Current-Induced Domain Wall Motion in TbFeCo micro wire. Journal of Physics: Conference Series, 2011, 266, 012082.	0.3	1
95	First Study on the Formation of Strontium Ferrite Thin Films on Functionalized Multi-Walled Carbon Nanotube. IEEE Transactions on Magnetics, 2011, 47, 2800-2803.	1.2	20
96	Magnetotransport Properties in Antiferromagnetically Exchange-Coupled Ni/TbFeCo/Ni Trilayers. IEEE Transactions on Magnetics, 2011, 47, 3126-3128.	1.2	0
97	Magnetic and Reflection Loss Characteristics of Substituted Barium Ferrite/Functionalized Multiwalled Carbon Nanotube. IEEE Transactions on Magnetics, 2011, 47, 4310-4313.	1.2	21
98	Effect of Sb Doping on the Thermoelectric Properties of Mg2Si0.7Sn0.3 Solid Solutions. Journal of Electronic Materials, 2011, 40, 830-834.	1.0	35
99	High domain wall magneto-resistance in amorphous TbFeCo wires. Applied Physics Letters, 2011, 99, 122501.	1.5	8
100	The effect of underlayers on FeCo thin films. Journal of Physics: Conference Series, 2011, 266, 012037.	0.3	16
101	Magnetization reversal mechanism of Nd-Fe-B films with perpendicular magnetic anisotropy. Journal of Applied Physics, 2011, 109, 07A725.	1.1	16
102	The role of symmetry-breaking-induced interface anisotropy in [Fe/Pt]n multilayer films. Journal of Applied Physics, 2011, 109, 07D343.	1.1	3
103	Interacting or non-interacting nanoparticles of (Mn1â^'xZnx)0.5Co0.5Fe2O4(x = 0 â€"1) ferrite synthesized by reverse micelle. Journal of Physics: Conference Series, 2011, 266, 012028.	0.3	0
104	Current-Induced Domain Wall Motion in TbFeCo Wires With Perpendicular Magnetic Anisotropy. IEEE Transactions on Magnetics, 2010, 46, 1695-1698.	1.2	33
105	Self-assembled strontium ferrite dot array on Au underlayer. Journal of Magnetism and Magnetic Materials, 2010, 322, 2043-2046.	1.0	8
106	The role of copper ions on the structural and magnetic characteristics of MgZn ferrite nanoparticles and thin films. Journal of Magnetism and Magnetic Materials, 2010, 322, 3064-3071.	1.0	17
107	Underlayer dependence of microtexture, microstructure and magnetic properties of c-axis oriented strontium ferrite thin films. Thin Solid Films, 2010, 518, 7059-7063.	0.8	18
108	Fabrication, crystallographic and magnetic properties of SrM perpendicular films on Au nano-dot arrays. Journal of Alloys and Compounds, 2010, 492, 44-47.	2.8	22

#	Article	IF	CITATIONS
109	Structural and magnetic properties of CuxMg0.5â^'xZn0.5Fe2O4 (x=0â€"0.5) particles. Journal of Alloys and Compounds, 2010, 506, 279-284.	2.8	10
110	The role of cations distribution on magnetic and reflection loss properties of ferrimagnetic SrFe12â^'x(Sn0.5Zn0.5)xO19. Journal of Applied Physics, 2010, 107, 09A734.	1.1	30
111	Mössbauer spectroscopy and magnetic susceptibility studies of Cr–Al substituted strontium ferrite particles. Journal of Applied Physics, 2010, 107, .	1.1	27
112	Manipulating the crystallographic properties of Fe/MgO/Fe trilayers. Journal of Applied Physics, 2009, 105, 07C909.	1.1	0
113	Effects of crystalline and elastic anisotropies on coercivity of longitudinally oriented CoCrPt thin films grown on CrW underlayer. Journal of Applied Physics, 2009, 105, 07D503.	1.1	1
114	One-pot synthesis of iron oxide–carbon core–shell particles in supercritical water. Materials Research Bulletin, 2009, 44, 1443-1450.	2.7	19
115	Microwave Absorption Properties of Mn–Co–Sn Doped Barium Ferrite Nanoparticles. IEEE Transactions on Magnetics, 2009, 45, 2456-2459.	1.2	57
116	Properties of Sr Ferrite Thin Films on Al-Si Underlayer. IEEE Transactions on Magnetics, 2009, 45, 2587-2589.	1.2	3
117	Effect of Additional Elements on the Structural Properties, Magnetic Characteristics and Natural Resonance Frequency of Strontium Ferrite Nanoparticles/Polymer Composite. IEEE Transactions on Magnetics, 2009, 45, 4420-4423.	1.2	47
118	Negative Coercivity and Spin Configuration in Ni/TbFeCo/Ni Trilayers. IEEE Transactions on Magnetics, 2009, 45, 4100-4103.	1.2	5
119	Improved thermoelectric properties of La-doped Bi2Sr2Co2O9-layered misfit oxides. Journal of Materials Science, 2009, 44, 1889-1893.	1.7	27
120	Crystallographic and magnetic properties of SrM thin films on Pt underlayer prepared at various substrate temperatures. Journal of Magnetism and Magnetic Materials, 2009, 321, 1939-1942.	1.0	19
121	Preparation of soft magnetic FeCo-based films for writers. Journal of Applied Physics, 2009, 105, 07B714.	1.1	28
122	Synthesis and characterization of CuO/ZnO-doped (Zr _{0.8} Sn _{0.2})TiO ₄ microwave ceramics. Journal of Physics: Conference Series, 2009, 191, 012016.	0.3	0
123	Structural and magnetic characteristics of SrM thin films on Au dot arrays. Journal of Physics: Conference Series, 2009, 191, 012026.	0.3	2
124	Investigation of the microwave absorptive behavior of doped barium ferrites. Materials & Design, 2008, 29, 112-117.	5.1	90
125	Magnetic properties of hexagonal strontium ferrite thick film synthesized by sol–gel processing using SrM nanoparticles. Journal of Magnetism and Magnetic Materials, 2008, 320, 2300-2304.	1.0	30
126	Mössbauer spectroscopy study of amorphous TbFeCo films for perpendicular magnetic data recording. Technical Physics Letters, 2008, 34, 1005-1007.	0.2	2

#	Article	IF	CITATIONS
127	Soft magnetic properties of FeCo films with high saturation magnetization. Journal of Applied Physics, 2008, 103, 07E726.	1.1	34
128	Epitaxial Growth of SrM(00\$I\$) Film on Au(111). IEEE Transactions on Magnetics, 2008, 44, 2899-2902.	1.2	9
129	STEP-FLOW GROWTH OF HETEROEPITAXIAL SrRuO ₃ THIN FILMS ON 0.04° SrTiO ₃ (001) VICINAL SUBSTRATES. Functional Materials Letters, 2008, 01, 253-257.	0.7	4
130	Magnetic Properties of FeCo Films Prepared by Co-Sputtering and Hydrogenous Gas Reactive Sputtering. IEEE Transactions on Magnetics, 2008, 44, 3910-3912.	1.2	11
131	Magnetization reversal mechanism of ultra thin Nd2Fe14B films with perpendicular magnetic anisotropy. Journal of Applied Physics, 2008, 103, 07E104.	1.1	4
132	Perpendicular magnetic anisotropy in TbFeCo films studied by magnetic Compton scattering. Journal of Applied Physics, 2007, 102, 013902.	1.1	11
133	Effect of Co underlayer on soft magnetic properties and microstructure of FeCo thin films. Journal of Magnetism and Magnetic Materials, 2007, 308, 165-169.	1.0	31
134	Anisotropies of spin densities in metallic multilayers with perpendicular anisotropies. Journal of Magnetism and Magnetic Materials, 2007, 310, 2710-2712.	1.0	0
135	Perpendicular magnetic anisotropy in sputtered amorphous TbFeCo films. Journal of Magnetism and Magnetic Materials, 2007, 310, 1744-1746.	1.0	10
136	Effect of sputtering gas (Ne, Ar, Kr) on the properties of L10 FePt films. Journal of Magnetism and Magnetic Materials, 2007, 310, e916-e917.	1.0	7
137	The property of multilayered SmCo ₅ film with perpendicular magnetic anisotropy. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 4166-4169.	0.8	5
138	Magnetic and microwave absorption properties of BaFe12â^'x (Mn0.5Cu0.5Zr)x/2O19 synthesized by solâ€"gel processing. Journal of Magnetism and Magnetic Materials, 2007, 316, e105-e108.	1.0	62
139	Preparation of barium ferrite dot arrays by means of nano-spot crystallization. Journal of Magnetism and Magnetic Materials, 2007, 316, e152-e154.	1.0	5
140	Magnetic properties of nanocrystalline and amorphous FeCoC thin films. , 2006, , .		0
141	Influence of matching thickness on the absorption properties of doped barium ferrites at microwave frequencies. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 358-365.	0.8	19
142	Magnetic characteristics of Mn-Co-Ti substituted barium ferrite synthesized by sol-gel processing. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2513-2521.	0.8	9
143	Induced anisotropy in soft magnetic Fe65Co35/Co thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 133, 61-65.	1.7	23
144	Self-assembled L10 FePt thin films for high-density magnetic recording. Journal of Magnetism and Magnetic Materials, 2006, 303, e255-e257.	1.0	3

#	Article	lF	CITATIONS
145	Sm–Co films for high-density magnetic recording media. Journal of Magnetism and Magnetic Materials, 2006, 303, e274-e276.	1.0	17
146	Soft magnetic properties of FeCo films with Co underlayer. Journal of Magnetism and Magnetic Materials, 2006, 303, e201-e204.	1.0	11
147	TiN underlayer and overlayer for TbFeCo perpendicular magnetic recording media. Journal of Magnetism and Magnetic Materials, 2006, 303, e133-e136.	1.0	13
148	Magnetic properties of hexagonal ferrite dot arrays. Journal of Magnetism and Magnetic Materials, 2006, 303, e277-e280.	1.0	7
149	Sm–Co and Nd–Fe–B thin films with perpendicular anisotropy for high-density magnetic recording media. Journal of Magnetism and Magnetic Materials, 2006, 304, 46-50.	1.0	20
150	The Effects of Underlayers for SmCo\$_5\$Thin Films With Perpendicular Magnetic Anisotropy. IEEE Transactions on Magnetics, 2006, 42, 2366-2368.	1.2	27
151	Magnetic Properties of Nanocrystalline and Amorphous FeCoC Thin Films. IEEE Transactions on Magnetics, 2006, 42, 2772-2774.	1.2	7
152	Ultra-Thin Nd\$_2\$Fe\$_14\$B Films With Perpendicular Magnetic Anisotropy. IEEE Transactions on Magnetics, 2006, 42, 2924-2926.	1.2	1
153	Studies on high-moment soft magnetic FeCo/Co thin films. Chinese Physics B, 2006, 15, 1351-1355.	1.3	10
154	Nd–Fe–B films with perpendicular magnetic anisotropy. Journal of Applied Physics, 2006, 99, 08N302.	1.1	16
155	TbFeCo perpendicular magnetic recording media deposited on nanohole arrays of porous alumina layer. Journal of Applied Physics, 2006, 99, 08G904.	1.1	15
156	The effects of underlayers for SmCo5 thin films with perpendicular magnetic anisotropy. , 2006, , .		0
157	Magnetic Properties of TbFeCo Amorphous Films Deposited on Patterned Underlayer. , 2006, , .		0
158	Ultra thin Nd2Fe14B films with perpendicular magnetic anisotropy. , 2006, , .		0
159	Magnetic compton profiles of Pd/Fe multilayers. Journal of Magnetism and Magnetic Materials, 2005, 286, 410-415.	1.0	2
160	TbFeco film with W underlayer and overlayer for perpendicular magnetic recording. Journal of Magnetism and Magnetic Materials, 2005, 287, 250-254.	1.0	17
161	Manipulation of crystal orientation and microstructure of barium ferrite thin film. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 138-140.	1.0	18
162	Compositional dependence of magnetoresistance in TbFeCo amorphous film. IEEE Transactions on Magnetics, 2005, 41, 2568-2570.	1.2	25

#	Article	IF	CITATIONS
163	Perpendicular orientation of Ba-ferrite thin film with Al top layer and underlayer. IEEE Transactions on Magnetics, 2005, 41, 4362-4364.	1.2	8
164	Effect of underlayer structure on the crystallographic and magnetic properties of Nd-Fe-B thin films. IEEE Transactions on Magnetics, 2005, 41, 3139-3141.	1.2	8
165	Soft anisotropic Fe/sub 65/Co/sub 35//Co thin films prepared by facing targets sputtering. IEEE Transactions on Magnetics, 2005, 41, 2905-2907.	1.2	19
166	Microstructure and magnetic properties of FePt and FePt-Al2O3thin films fabricated by in situ ordering process. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1829-1833.	0.8	3
167	Effect of W underlayer on the crystal orientation and microstructure of NdFeB thin films. Journal of Applied Physics, 2005, 97, 10K301.	1.1	7
168	Magnetic properties of BaMâ^•Pd–Pt double-layered thin film deposited at various substrate temperatures. Journal of Applied Physics, 2005, 97, 10K305.	1,1	5
169	Reduction of Ordering Temperature of FePt–Al 2 O 3 Thin Films by N 2 Addition During Sputtering. Chinese Physics Letters, 2005, 22, 2899-2902.	1.3	6
170	Micromagnetic studies of domain structures and switching properties in a magnetoresistive random access memory cell. Journal of Applied Physics, 2005, 97, 10E310.	1,1	1
171	C-axis oriented L10 phase FePt thin films by plasma-assisted diffusion. Journal of Applied Physics, 2005, 97, 10H302.	1.1	4
172	Magnetoresistance in amorphous TbFeCo films with perpendicular magnetic anisotropy. Journal of Applied Physics, 2005, 97, 10C515.	1.1	15
173	Introduction and control of metastable states in elliptical and rectangular magnetic nanoelements. Applied Physics Letters, 2004, 84, 4406-4408.	1.5	33
174	Reversal mechanisms and metastable states in magnetic nanoelements. Journal of Applied Physics, 2004, 96, 5173-5179.	1.1	23
175	Magnetic properties of Sr-ferrite dot arrays by electron beam lithography. Journal of Applied Physics, 2003, 93, 7423-7425.	1.1	3
176	Magnetic and magneto-optical properties of Fe/Fe3O4 multilayers prepared by pulsed laser deposition. Journal of Magnetism and Magnetic Materials, 2002, 240, 430-432.	1.0	7
177	Crystallization of Ba-Me hexagonal ferrite thin films. Physics of the Solid State, 2002, 44, 1711-1714.	0.2	3
178	Magnetic and crystallographic properties of La–Zn substituted Sr-ferrite thin films. Journal of Applied Physics, 2000, 87, 6875-6877.	1.1	21
179	The effects of Laâ€"Zn substitution on the magnetic properties of Sr-magnetoplumbite ferrite nano-particles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 68, 182-185.	1.7	60
180	Barium ferrite thin films prepared by alternate deposition. Journal of Magnetism and Magnetic Materials, 2000, 212, 273-276.	1.0	14

XIAO-XI LIU

#	Article	IF	CITATIONS
181	La–Zn substituted hexagonal Sr ferrite thin films for high density magnetic recording. Journal of Applied Physics, 2000, 87, 2503-2506.	1.1	28
182	Partially crystallized BaM thin films for high density magnetic recording. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 65, 90-93.	1.7	3
183	The Study of Sputtered Barium Ferrite Thin Films. Physica Status Solidi A, 1999, 174, 389-394.	1.7	8
184	The effect of underlayer for Ba-ferrite sputtered films on c-axis orientation. Journal of Applied Physics, 1997, 81, 4374-4376.	1.1	65