
Raffael Amacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4390871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Interface for Hybrid Mock Circulations to Evaluate Ventricular Assist Devices. IEEE Transactions on Biomedical Engineering, 2013, 60, 507-516.	4.2	68
2	Left Ventricular Assist Devices: Challenges Toward Sustaining Long-Term Patient Care. Annals of Biomedical Engineering, 2017, 45, 1836-1851.	2.5	42
3	A Physiological Controller for Turbodynamic Ventricular Assist Devices Based on a Measurement of the Left Ventricular Volume. Artificial Organs, 2014, 38, 527-538.	1.9	40
4	In Vivo Evaluation of Physiologic Control Algorithms for Left Ventricular Assist Devices Based on Left Ventricular Volume or Pressure. ASAIO Journal, 2017, 63, 568-577.	1.6	34
5	Synchronized Pulsatile Speed Control of Turbodynamic Left Ventricular Assist Devices: Review and Prospects. Artificial Organs, 2014, 38, 867-875.	1.9	33
6	Control of ventricular unloading using an electrocardiogram-synchronized Thoratec paracorporeal ventricular assist device. Journal of Thoracic and Cardiovascular Surgery, 2013, 146, 710-717.	0.8	28
7	Control of the Fluid Viscosity in a Mock Circulation. Artificial Organs, 2018, 42, 68-77.	1.9	28
8	A Physiological Controller for Turbodynamic Ventricular Assist Devices Based on Left Ventricular Systolic Pressure. Artificial Organs, 2016, 40, 842-855.	1.9	22
9	Numerical Optimal Control of Turbo Dynamic Ventricular Assist Devices. Bioengineering, 2014, 1, 22-46.	3.5	21
10	Analysis of Pressure Head-Flow Loops of Pulsatile Rotodynamic Blood Pumps. Artificial Organs, 2014, 38, 316-326.	1.9	21
11	Minimizing left ventricular stroke work with iterative learning flow profile control of rotary blood pumps. Biomedical Signal Processing and Control, 2017, 31, 444-451.	5.7	21
12	A Robust Reference Signal Generator for Synchronized Ventricular Assist Devices. IEEE Transactions on Biomedical Engineering, 2013, 60, 2174-2183.	4.2	20
13	Emulation of ventricular suction in a hybrid mock circulation. , 2013, , .		9
14	High-frequency operation of a pulsatile VAD – a simulation study. Biomedizinische Technik, 2017, 62, 161-170.	0.8	7
15	Effects of Thoratec pulsatile ventricular assist device timing on the abdominal aortic wave intensity pattern. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1243-H1251.	3.2	4
16	Response of a physiological controller for ventricular assist devices during acute patho-physiological events: an in vitro study. Biomedizinische Technik, 2017, 62, 623-633.	0.8	4
17	A Novel Mean-Value Model of the Cardiovascular System Including a Left Ventricular Assist Device. Cardiovascular Engineering and Technology, 2017, 8, 120-130.	1.6	3