Enrica Leccisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4390850/publications.pdf

Version: 2024-02-01

687363 940533 21 719 13 16 citations h-index g-index papers 21 21 21 722 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Comment on Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14, 4508. Energies, 2022, 15, 971.	3.1	5
2	Life-Cycle Analysis of Tandem PV Perovskite-Modules and Systems. , 2021, , .		3
3	Updated sustainability status of crystalline siliconâ€based photovoltaic systems: Lifeâ€cycle energy and environmental impact reduction trends. Progress in Photovoltaics: Research and Applications, 2021, 29, 1068-1077.	8.1	44
4	Life cycle energy demand and carbon emissions of scalable singleâ€junction and tandem perovskite PV. Progress in Photovoltaics: Research and Applications, 2021, 29, 1078-1092.	8.1	27
5	Exploring Avoided Environmental Impacts as Well as Energy and Resource Recovery from Microbial Desalination Cell Treatment of Brine. Energies, 2021, 14, 4453.	3.1	8
6	Life-Cycle Carbon Emissions and Energy Implications of High Penetration of Photovoltaics and Electric Vehicles in California. Energies, 2021, 14, 5165.	3.1	3
7	Environmental Impacts of Photovoltaic Life Cycles. , 2021, , .		O
8	Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.). Energies, 2020, 13, 3934.	3.1	28
9	What Are the Energy and Environmental Impacts of Adding Battery Storage to Photovoltaics? A Generalized Life Cycle Assessment. Energy Technology, 2020, 8, 1901146.	3.8	35
10	Life-cycle environmental impacts of single-junction and tandem perovskite PVs: a critical review and future perspectives. Progress in Energy, 2020, 2, 032002.	10.9	30
11	Solar Cells: Energy Payback Times and Environmental Issues. , 2020, , 1-18.		1
12	Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics. Energy, 2019, 166, 1089-1096.	8.8	83
13	Critical Review of Perovskite Photovoltaic Life Cycle Environmental Impact Studies., 2019,,.		4
14	A multi-disciplinary analysis of UK grid mix scenarios with large-scale PV deployment. Energy Policy, 2018, 114, 51-62.	8.8	21
15	Sustainable urban electricity supply chain – Indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life. Ecological Indicators, 2018, 94, 37-51.	6.3	80
16	The energy performance of potential scenarios with large-scale PV deployment in Chile – a dynamic analysis. , 2018, , .		8
17	Net energy analysis and life cycle energy assessment of electricity supply in Chile: Present status and future scenarios. Energy, 2018, 162, 659-668.	8.8	30
18	Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response. Energy Policy, 2017, 102, 377-384.	8.8	59

ENRICA LECCISI

#	Article	IF	CITATIONS
19	An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation. Energy Policy, 2017, 100, 350-358.	8.8	47
20	The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systemsâ€"A Timely Update. Energies, 2016, 9, 622.	3.1	117
21	A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom. Energy Policy, 2016, 90, 46-59.	8.8	86