
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4390798/publications.pdf Version: 2024-02-01

LOSE DONATO

#	Article	IF	CITATIONS
1	Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience, 2011, 173, 37-56.	1.1	286
2	Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. Journal of Clinical Investigation, 2012, 122, 1000-1009.	3.9	283
3	Leptin's effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. Journal of Clinical Investigation, 2011, 121, 355-368.	3.9	281
4	Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10673-10678.	3.3	152
5	FOXO1 in the ventromedial hypothalamus regulates energy balance. Journal of Clinical Investigation, 2012, 122, 2578-2589.	3.9	121
6	Hypothalamic Sites of Leptin Action Linking Metabolism and Reproduction. Neuroendocrinology, 2011, 93, 9-18.	1.2	113
7	The Ventral Premammillary Nucleus Links Fasting-Induced Changes in Leptin Levels and Coordinated Luteinizing Hormone Secretion. Journal of Neuroscience, 2009, 29, 5240-5250.	1.7	112
8	Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer's disease. Translational Psychiatry, 2021, 11, 251.	2.4	112
9	The role of leptin in health and disease. Temperature, 2017, 4, 258-291.	1.7	108
10	Effects of leucine supplementation on the body composition and protein status of rats submitted to food restriction. Nutrition, 2006, 22, 520-527.	1.1	99
11	Reviewing the Effects of l-Leucine Supplementation in the Regulation of Food Intake, Energy Balance, and Glucose Homeostasis. Nutrients, 2015, 7, 3914-3937.	1.7	98
12	Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. Journal of Comparative Neurology, 2014, 522, 1454-1484.	0.9	91
13	Chronic sleep restriction promotes brain inflammation and synapse loss, and potentiates memory impairment induced by amyloid-1² oligomers in mice. Brain, Behavior, and Immunity, 2017, 64, 140-151.	2.0	89
14	Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity. Molecular Metabolism, 2014, 3, 608-618.	3.0	81
15	Shift in Kiss1 Cell Activity Requires Estrogen Receptor α. Journal of Neuroscience, 2013, 33, 2807-2820.	1.7	74
16	Possible crosstalk between leptin and prolactin during pregnancy. Neuroscience, 2014, 259, 71-83.	1.1	73
17	Growth hormone regulates neuroendocrine responses to weight loss via AgRP neurons. Nature Communications, 2019, 10, 662.	5.8	68
18	Leptin Does Not Directly Affect CNS Serotonin Neurons to Influence Appetite. Cell Metabolism, 2011, 13, 584-591.	7.2	67

#	Article	IF	CITATIONS
19	The Acute Effects of Leptin Require PI3K Signaling in the Hypothalamic Ventral Premammillary Nucleus. Journal of Neuroscience, 2011, 31, 13147-13156.	1.7	66
20	Distribution of growth hormone-responsive cells in the mouse brain. Brain Structure and Function, 2017, 222, 341-363.	1.2	66
21	SOCS3 as a future target to treat metabolic disorders. Hormones, 2019, 18, 127-136.	0.9	66
22	Chemical identity and connections of medial preoptic area neurons expressing melanin-concentrating hormone during lactation. Journal of Chemical Neuroanatomy, 2010, 39, 51-62.	1.0	64
23	Leptin resensitisation: a reversion of leptin-resistant states. Journal of Endocrinology, 2019, 241, R81-R96.	1.2	64
24	Oral supplementations with free and dipeptide forms of l-glutamine in endotoxemic mice: effects on muscle glutamine-glutathione axis and heat shock proteins. Journal of Nutritional Biochemistry, 2014, 25, 345-352.	1.9	60
25	Cannabinoid Receptor 1 in the Vagus Nerve Is Dispensable for Body Weight Homeostasis But Required for Normal Gastrointestinal Motility. Journal of Neuroscience, 2012, 32, 10331-10337.	1.7	59
26	Leucine supplementation improves adiponectin and total cholesterol concentrations despite the lack of changes in adiposity or glucose homeostasis in rats previously exposed to a high-fat diet. Nutrition and Metabolism, 2011, 8, 62.	1.3	57
27	Melatonin Absence Leads to Long-Term Leptin Resistance and Overweight in Rats. Frontiers in Endocrinology, 2018, 9, 122.	1.5	57
28	Leptin Induces Phosphorylation of Neuronal Nitric Oxide Synthase in Defined Hypothalamic Neurons. Endocrinology, 2010, 151, 5415-5427.	1.4	56
29	Leucine Is Essential for Attenuating Fetal Growth Restriction Caused by a Protein-Restricted Diet in Rats. Journal of Nutrition, 2012, 142, 924-930.	1.3	50
30	Male and female odors induce Fos expression in chemically defined neuronal population. Physiology and Behavior, 2010, 99, 67-77.	1.0	48
31	Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the habenula and raphe nuclei. Journal of Comparative Neurology, 2017, 525, 2411-2442.	0.9	48
32	Long-term leucine supplementation reduces fat mass gain without changing body protein status of aging rats. Nutrition, 2012, 28, 182-189.	1.1	47
33	Habenular connections with the dopaminergic and serotonergic system and their role in stressâ€related psychiatric disorders. European Journal of Neuroscience, 2021, 53, 65-88.	1.2	46
34	Obesity impairs lactation performance in mice by inducing prolactin resistance. Scientific Reports, 2016, 6, 22421.	1.6	44
35	Lesions of the ventral premammillary nucleus disrupt the dynamic changes in Kiss1 and GnRH expression characteristic of the proestrus–estrus transition. Neuroscience, 2013, 241, 67-79.	1.1	43
36	Prolactin-sensitive neurons express estrogen receptor-α and depend on sex hormones for normal responsiveness to prolactin. Brain Research, 2014, 1566, 47-59.	1.1	43

#	Article	IF	CITATIONS
37	SOCS3 deficiency in leptin receptor-expressing cells mitigates the development of pregnancy-induced metabolic changes. Molecular Metabolism, 2015, 4, 237-245.	3.0	43
38	Changes in Leptin Signaling by SOCS3 Modulate Fasting-Induced Hyperphagia and Weight Regain in Mice. Endocrinology, 2016, 157, 3901-3914.	1.4	43
39	The PI3K signaling pathway mediates the biological effects of leptin. Arquivos Brasileiros De Endocrinologia E Metabologia, 2010, 54, 591-602.	1.3	42
40	Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy. Clinical Science, 2017, 131, 2885-2900.	1.8	40
41	Short-term exposure to air pollution (PM2.5) induces hypothalamic inflammation, and long-term leads to leptin resistance and obesity via Tlr4/Ikbke in mice. Scientific Reports, 2020, 10, 10160.	1.6	35
42	Leptin Resistance Is Not the Primary Cause of Weight Gain Associated With Reduced Sex Hormone Levels in Female Mice. Endocrinology, 2014, 155, 4226-4236.	1.4	34
43	Zinc Supplementation Improves Glucose Homeostasis in High Fat-Fed Mice by Enhancing Pancreatic β-Cell Function. Nutrients, 2017, 9, 1150.	1.7	34
44	Central Regulation of Metabolism by Growth Hormone. Cells, 2021, 10, 129.	1.8	34
45	Growth hormone enhances the recovery of hypoglycemia <i>via</i> ventromedial hypothalamic neurons. FASEB Journal, 2019, 33, 11909-11924.	0.2	33
46	The Ventral Premammillary Nucleus Links Metabolic Cues and Reproduction. Frontiers in Endocrinology, 2011, 2, 57.	1.5	32
47	Interactions between prolactin and kisspeptin to control reproduction. Archives of Endocrinology and Metabolism, 2016, 60, 587-595.	0.3	32
48	The partial inhibition of hypothalamic IRX3 exacerbates obesity. EBioMedicine, 2019, 39, 448-460.	2.7	32
49	Fatness rather than leptin sensitivity determines the timing of puberty in female mice. Molecular and Cellular Endocrinology, 2016, 423, 11-21.	1.6	31
50	Long-term consequences of the absence of leptin signaling in early life. ELife, 2019, 8, .	2.8	31
51	TGF-β1 down-regulation in the mediobasal hypothalamus attenuates hypothalamic inflammation and protects against diet-induced obesity. Metabolism: Clinical and Experimental, 2018, 85, 171-182.	1.5	30
52	Brain STAT5 signaling modulates learning and memory formation. Brain Structure and Function, 2018, 223, 2229-2241.	1.2	29
53	Neuronal STAT5 signaling is required for maintaining lactation but not for postpartum maternal behaviors in mice. Hormones and Behavior, 2015, 71, 60-68.	1.0	28
54	Central growth hormone action regulates metabolism during pregnancy. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E925-E940.	1.8	28

#	Article	IF	CITATIONS
55	Tyrosine Hydroxylase Neurons Regulate Growth Hormone Secretion via Short-Loop Negative Feedback. Journal of Neuroscience, 2020, 40, 4309-4322.	1.7	28
56	Distribution and neurochemical characterization of protein kinase C-theta and -delta in the rodent hypothalamus. Neuroscience, 2010, 170, 1065-1079.	1.1	27
57	STAT5 signaling in kisspeptin cells regulates the timing of puberty. Molecular and Cellular Endocrinology, 2017, 448, 55-65.	1.6	27
58	Removing melatonin receptor type 1 signaling leads to selective leptin resistance in the arcuate nucleus. Journal of Pineal Research, 2019, 67, e12580.	3.4	27
59	Effect of chronic supplementation with branched-chain amino acids on the performance and hepatic and muscle glycogen content in trained rats. Life Sciences, 2006, 79, 1343-1348.	2.0	26
60	Uncaria tomentosa improves insulin sensitivity and inflammation in experimental NAFLD. Scientific Reports, 2018, 8, 11013.	1.6	25
61	Growth hormone/STAT5 signaling in proopiomelanocortin neurons regulates glucoprivic hyperphagia. Molecular and Cellular Endocrinology, 2019, 498, 110574.	1.6	25
62	Growth Hormone Receptor Deletion Reduces the Density of Axonal Projections from Hypothalamic Arcuate Nucleus Neurons. Neuroscience, 2020, 434, 136-147.	1.1	25
63	Effects of growth hormone in the central nervous system. Archives of Endocrinology and Metabolism, 2020, 63, 549-556.	0.3	25
64	Central growth hormone signaling is not required for the timing of puberty. Journal of Endocrinology, 2019, 243, 161-173.	1.2	24
65	Oral Leucine Supplementation Is Sensed by the Brain but neither Reduces Food Intake nor Induces an Anorectic Pattern of Gene Expression in the Hypothalamus. PLoS ONE, 2013, 8, e84094.	1.1	23
66	Brain STAT5 signaling and behavioral control. Molecular and Cellular Endocrinology, 2016, 438, 70-76.	1.6	23
67	Acute effects of somatomammotropin hormones on neuronal components of the hypothalamic-pituitary-gonadal axis. Brain Research, 2019, 1714, 210-217.	1.1	23
68	Increased Airway Reactivity and Hyperinsulinemia in Obese Mice Are Linked by ERK Signaling in Brain Stem Cholinergic Neurons. Cell Reports, 2015, 11, 934-943.	2.9	22
69	Combined treatment with melatonin and insulin improves glycemic control, white adipose tissue metabolism and reproductive axis of diabetic male rats. Life Sciences, 2018, 199, 158-166.	2.0	22
70	<code>PI3Kl̂\pm</code> inactivation in leptin receptor cells increases leptin sensitivity but disrupts growth and reproduction. JCI Insight, 2017, 2, .	2.3	21
71	Characterization of the metabolic differences between male and female C57BL/6 mice. Life Sciences, 2022, 301, 120636.	2.0	21
72	Interleukin-17 acts in the hypothalamus reducing food intake. Brain, Behavior, and Immunity, 2020, 87, 272-285.	2.0	20

#	Article	IF	CITATIONS
73	Leptin receptor-positive and leptin receptor-negative proopiomelanocortin neurons innervate an identical set of brain structures. Brain Research, 2016, 1646, 366-376.	1.1	19
74	Distribution of growth hormone-responsive cells in the brain of rats and mice. Brain Research, 2021, 1751, 147189.	1.1	19
75	Connections of the laterodorsal tegmental nucleus with the habenularâ€interpeduncularâ€raphe system. Journal of Comparative Neurology, 2019, 527, 3046-3072.	0.9	18
76	Effects of leucine and phenylalanine supplementation during intermittent periods of food restriction and refeeding in adult rats. Life Sciences, 2007, 81, 31-39.	2.0	16
77	The Central Nervous System as a Promising Target to Treat Diabetes Mellitus. Current Topics in Medicinal Chemistry, 2012, 12, 2070-2081.	1.0	16
78	Leucine improves protein nutritional status and regulates hepatic lipid metabolism in calorieâ€restricted rats. Cell Biochemistry and Function, 2014, 32, 326-332.	1.4	16
79	Prolonged fasting induces long-lasting metabolic consequences in mice. Journal of Nutritional Biochemistry, 2020, 84, 108457.	1.9	16
80	Intrinsic organization of the suprachiasmatic nucleus in the capuchin monkey. Brain Research, 2014, 1543, 65-72.	1.1	15
81	STAT5 ablation in AgRP neurons increases female adiposity and blunts food restriction adaptations. Journal of Molecular Endocrinology, 2020, 64, 13-27.	1.1	15
82	SOCS3 expression in SF1 cells regulates adrenal differentiation and exercise performance. Journal of Endocrinology, 2017, 235, 207-222.	1.2	14
83	Cdc2-like kinase 2 in the hypothalamus is necessary to maintain energy homeostasis. International Journal of Obesity, 2017, 41, 268-278.	1.6	14
84	Maternal metabolic adaptations are necessary for normal offspring growth and brain development. Physiological Reports, 2018, 6, e13643.	0.7	14
85	Hormônio do crescimento e exercÃcio fÃsico: considerações atuais. BJPS: Brazilian Journal of Pharmaceutical Sciences, 2008, 44, 549-562.	0.5	13
86	Leucine supplementation increases serum insulin-like growth factor 1 concentration and liver protein/RNA ratio in rats after a period of nutritional recovery. Applied Physiology, Nutrition and Metabolism, 2013, 38, 694-697.	0.9	13
87	l-Leucine Supplementation Worsens the Adiposity of Already Obese Rats by Promoting a Hypothalamic Pattern of Gene Expression that Favors Fat Accumulation. Nutrients, 2014, 6, 1364-1373.	1.7	13
88	A Short-Day Photoperiod Delays the Timing of Puberty in Female Mice via Changes in the Kisspeptin System. Frontiers in Endocrinology, 2018, 9, 44.	1.5	13
89	Suppression of Prolactin Secretion Partially Explains the Antidiabetic Effect of Bromocriptine in ob/ob Mice. Endocrinology, 2019, 160, 193-204.	1.4	13
90	Regulation and neurochemical identity of melanin oncentrating hormone neurones in the preoptic area of lactating mice. Journal of Neuroendocrinology, 2020, 32, e12818.	1.2	13

#	Article	IF	CITATIONS
91	Neurochemical phenotype of growth hormoneâ€responsive cells in the mouse paraventricular nucleus of the hypothalamus. Journal of Comparative Neurology, 2021, 529, 1228-1239.	0.9	13
92	Ghrelin-induced Food Intake, but not GH Secretion, Requires the Expression of the GH Receptor in the Brain of Male Mice. Endocrinology, 2021, 162, .	1.4	13
93	Evaluation of food intake and Fos expression in serotonergic neurons of raphe nuclei after intracerebroventricular injection of adrenaline in free-feeding rats. Brain Research, 2018, 1678, 153-163.	1.1	12
94	Cholinergic neurons in the hypothalamus and dorsal motor nucleus of the vagus are directly responsive to growth hormone. Life Sciences, 2020, 259, 118229.	2.0	11
95	Effects of the Isolated and Combined Ablation of Growth Hormone and IGF-1 Receptors in Somatostatin Neurons. Endocrinology, 2022, 163, .	1.4	11
96	Dieta rica em proteÃna na redução do peso corporal. Revista De Nutricao, 2009, 22, 105-111.	0.4	10
97	Leucine supplementation favors liver protein status but does not reduce body fat in rats during 1 week of food restriction. Applied Physiology, Nutrition and Metabolism, 2010, 35, 180-183.	0.9	10
98	Relationship of α-MSH and AgRP axons to the perikarya of melanocortin-4 receptor neurons. Brain Research, 2019, 1717, 136-146.	1.1	10
99	P110β in the ventromedial hypothalamus regulates glucose and energy metabolism. Experimental and Molecular Medicine, 2019, 51, 1-9.	3.2	10
100	Tumor Necrosis Factor α and Interleukin-1β Acutely Inhibit AgRP Neurons in the Arcuate Nucleus of the Hypothalamus. International Journal of Molecular Sciences, 2020, 21, 8928.	1.8	10
101	Differences between rats and mice in the leptin action on the paraventricular nucleus of the hypothalamus: Implications for the regulation of the hypothalamicâ€pituitaryâ€thyroid axis. Journal of Neuroendocrinology, 2020, 32, e12895.	1.2	10
102	Deletion of growth hormone receptor in hypothalamic neurons affects the adaptation capacity to aerobic exercise. Peptides, 2021, 135, 170426.	1.2	10
103	Injections of the of the α 1 -adrenoceptor antagonist prazosin into the median raphe nucleus increase food intake and Fos expression in orexin neurons of free-feeding rats. Behavioural Brain Research, 2017, 324, 87-95.	1.2	9
104	SOCS3 ablation in SF1 cells causes modest metabolic effects during pregnancy and lactation. Neuroscience, 2017, 365, 114-124.	1.1	9
105	Resilient hepatic mitochondrial function and lack of iNOS dependence in diet-induced insulin resistance. PLoS ONE, 2019, 14, e0211733.	1.1	9
106	Postnatal Overnutrition Induces Changes in Synaptic Transmission to Leptin Receptor-Expressing Neurons in the Arcuate Nucleus of Female Mice. Nutrients, 2020, 12, 2425.	1.7	9
107	Leptin Receptor Expression in GABAergic Cells is Not Sufficient to Normalize Metabolism and Reproduction in Mice. Endocrinology, 2021, 162, .	1.4	9
108	Effects of Growth Hormone Receptor Ablation in Corticotropin-Releasing Hormone Cells. International Journal of Molecular Sciences, 2021, 22, 9908.	1.8	9

#	Article	IF	CITATIONS
109	Distinct effects of growth hormone deficiency and disruption of hypothalamic kisspeptin system on reproduction of male mice. Life Sciences, 2021, 285, 119970.	2.0	9
110	Vasoactive intestinal peptide exerts an excitatory effect on hypothalamic kisspeptin neurons during estrogen negative feedback. Molecular and Cellular Endocrinology, 2022, 542, 111532.	1.6	9
111	SOCS3 expression within leptin receptor-expressing cells regulates food intake and leptin sensitivity but does not affect weight gain in pregnant mice consuming a high-fat diet. Physiology and Behavior, 2016, 157, 109-115.	1.0	8
112	Expression, purification and characterization of the authentic form of human growth hormone receptor antagonist G120R-hGH obtained in Escherichia coli periplasmic space. Protein Expression and Purification, 2017, 131, 91-100.	0.6	8
113	Interleukin-6 and the Gut Microbiota Influence Melanoma Progression in Obese Mice. Nutrition and Cancer, 2021, 73, 642-651.	0.9	8
114	Growth hormone receptor in dopaminergic neurones regulates stressâ€induced prolactin release in male mice. Journal of Neuroendocrinology, 2021, 33, e12957.	1.2	8
115	Leptin Signaling Suppression in Macrophages Improves Immunometabolic Outcomes in Obesity. Diabetes, 2022, 71, 1546-1561.	0.3	8
116	Effect of lycopene on biomarkers of oxidative stress in rats supplemented with ωâ^'3 polyunsaturated fatty acids. Food Research International, 2007, 40, 939-946.	2.9	7
117	Rolling out physical exercise and energy homeostasis: Focus on hypothalamic circuitries. Frontiers in Neuroendocrinology, 2021, 63, 100944.	2.5	7
118	Deletion of miRNA-22 Induces Cardiac Hypertrophy in Females but Attenuates Obesogenic Diet-Mediated Metabolic Disorders Cellular Physiology and Biochemistry, 2020, 54, 1199-1217.	1.1	7
119	Ablation of Growth Hormone Receptor in GABAergic Neurons Leads to Increased Pulsatile Growth Hormone Secretion. Endocrinology, 2022, 163, .	1.4	7
120	The miRNAâ€143â€3p–Sox6–Myh7 pathway is altered in obesogenic dietâ€induced cardiac hypertrophy. Experimental Physiology, 2022, 107, 892-905.	0.9	7
121	Brain STAT5 Modulates Long-Term Metabolic and Epigenetic Changes Induced by Pregnancy and Lactation in Female Mice. Endocrinology, 2019, 160, 2903-2917.	1.4	6
122	Characterization of the onset of leptin effects on the regulation of energy balance. Journal of Endocrinology, 2021, 249, 239-251.	1.2	6
123	Recreational Physical Activity Improves Adherence and Dropout in a Non-Intensive Behavioral Intervention for Adolescents With Obesity. Research Quarterly for Exercise and Sport, 2022, 93, 659-669.	0.8	6
124	Conspecific odor exposure predominantly activates non-kisspeptin cells in the medial nucleus of the amygdala. Neuroscience Letters, 2018, 681, 12-16.	1.0	5
125	Angiotensin II type 2 receptor mediates high fat diet-induced cardiomyocyte hypertrophy and hypercholesterolemia. Molecular and Cellular Endocrinology, 2019, 498, 110576.	1.6	5
126	Fasting reduces the number of TRH immunoreactive neurons in the hypothalamic paraventricular nucleus of male rats, but not in mice. Neuroscience Letters, 2021, 752, 135832.	1.0	5

#	ARTICLE	IF	CITATIONS
127	SOCS3 Ablation in Leptin Receptor-Expressing Cells Causes Autonomic and Cardiac Dysfunctions in Middle-Aged Mice despite Improving Energy and Glucose Metabolism. International Journal of Molecular Sciences, 2022, 23, 6484.	1.8	5
128	STAT3 but Not ERK2 Is a Crucial Mediator Against Diet-Induced Obesity via VMH Neurons. Diabetes, 2021, 70, 1498-1507.	0.3	4
129	Evaluation of Hepatic Steatosis in Rodents by Time-Domain Nuclear Magnetic Resonance. Diagnostics, 2019, 9, 198.	1.3	3
130	Injections of the α-2 adrenoceptor agonist clonidine into the dorsal raphe nucleus increases food intake in satiated rats. Neuropharmacology, 2021, 182, 108397.	2.0	3
131	The orphan receptor GPR68 is expressed in the hypothalamus and is involved in the regulation of feeding. Neuroscience Letters, 2022, 781, 136660.	1.0	3
132	The effect of central growth hormone action on hypoxia ventilatory response in conscious mice. Brain Research, 2022, 1791, 147995.	1.1	3
133	Growth hormone receptor contributes to the activation of STAT5 in the hypothalamus of pregnant mice. Neuroscience Letters, 2022, 770, 136402.	1.0	2
134	TLR4-interactor with leucine-rich repeats (TRIL) is involved in diet-induced hypothalamic inflammation. Scientific Reports, 2021, 11, 18015.	1.6	1
135	Hypothalamic CREB Regulates the Expression of Pomc-Processing Enzyme Pcsk2. Cells, 2022, 11, 1996.	1.8	1
136	Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. Journal of Comparative Neurology, 2014, 522, Spc1-Spc1.	0.9	0
137	Cardiorespiratory fitness in adolescents with obesity: a 6-month follow-up study. Revista Brasileira De Atividade FÃsica E Saúde, 2017, 22, 404-412.	0.1	0
138	Simple method to induce denaturation of fluorescent proteins in free-floating brain slices. Journal of Neuroscience Methods, 2022, 371, 109500.	1.3	0
139	Neuropeptide Y Neurons Integrate the Metabolic and Cognitive Effects of Brain Insulin Signaling. Journal of Integrative Neuroscience, 2022, 21, 048.	0.8	0