
Todd C Esque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4390731/publications.pdf Version: 2024-02-01

TODD C FSOLIE

#	Article	IF	CITATIONS
1	Local climate adaptations in two ubiquitous Mojave Desert shrub species, <i>Ambrosia dumosa</i> and <i>Larrea tridentata</i> . Journal of Ecology, 2022, 110, 1072-1089.	4.0	10
2	Seed Menus: An integrated decisionâ€support framework for native plant restoration in the Mojave Desert. Ecology and Evolution, 2022, 12, e8805.	1.9	5
3	What commonâ€garden experiments tell us about climate responses in plants. Journal of Ecology, 2022, 110, 986-996.	4.0	16
4	Comparing sample bias correction methods for species distribution modeling using virtual species. Ecosphere, 2021, 12, e03422.	2.2	42
5	Priority Species Lists to Restore Desert Tortoise and Pollinator Habitats in Mojave Desert Shrublands. Natural Areas Journal, 2021, 41, .	0.5	4
6	Linking behavioral states to landscape features for improved conservation management. Ecology and Evolution, 2021, 11, 7905-7916.	1.9	3
7	Using movement to inform conservation corridor design for Mojave desert tortoise. Movement Ecology, 2020, 8, 38.	2.8	11
8	Spatially Consistent High-Resolution Land Surface Temperature Mosaics for Thermophysical Mapping of the Mojave Desert. Sensors, 2019, 19, 2669.	3.8	6
9	Spatial decisionâ€support tools to guide restoration and seedâ€sourcing in the Desert Southwest. Ecosphere, 2018, 9, e02453.	2.2	17
10	Drawing a line in the sand: Effectiveness of off-highway vehicle management in California's Sonoran desert. Journal of Environmental Management, 2017, 193, 448-457.	7.8	6
11	Spatial Demographic Models to Inform Conservation Planning of Golden Eagles in Renewable Energy Landscapes. Journal of Raptor Research, 2017, 51, 234-257.	0.6	21
12	Landscape genetic approaches to guide native plant restoration in the Mojave Desert. Ecological Applications, 2017, 27, 429-445.	3.8	56
13	Topography and climate are more important drivers of longâ€ŧerm, postâ€fire vegetation assembly than timeâ€sinceâ€fire in the Sonoran Desert, <scp>US</scp> . Journal of Vegetation Science, 2015, 26, 1134-1147.	2.2	22
14	Direct and indirect effects of environmental variability on growth and survivorship of preâ€reproductive Joshua trees, <i>Yucca brevifolia</i> Engelm. (Agavaceae). American Journal of Botany, 2015, 102, 85-91.	1.7	16
15	Desert tortoise use of burned habitat in the Eastern Mojave desert. Journal of Wildlife Management, 2015, 79, 618-629.	1.8	25
16	Landscape genomics of Sphaeralcea ambigua in the Mojave Desert: a multivariate, spatially-explicit approach to guide ecological restoration. Conservation Genetics, 2015, 16, 1303-1317.	1.5	28
17	Lifeâ€history traits predict perennial species response to fire in a desert ecosystem. Ecology and Evolution, 2014, 4, 3046-3059.	1.9	26
18	The role of fire on soil mounds and surface roughness in the Mojave Desert. Earth Surface Processes and Landforms, 2013, 38, 111-121.	2.5	13

TODD C ESQUE

#	Article	IF	CITATIONS
19	Desert Fires Fueled by Native Annual Forbs: Effects of Fire on Communities of Plants and Birds in the Lower Sonoran Desert of Arizona. Southwestern Naturalist, 2013, 58, 223-233.	0.1	16
20	Disruption rates for one vulnerable soil in Organ Pipe Cactus National Monument, Arizona, USA. Journal of Arid Environments, 2013, 95, 75-83.	2.4	7
21	Evolutionary Hotspots in the Mojave Desert. Diversity, 2013, 5, 293-319.	1.7	37
22	Short seed longevity, variable germination conditions, and infrequent establishment events provide a narrow window for <i>Yucca brevifolia</i> (Agavaceae) recruitment. American Journal of Botany, 2012, 99, 1647-1654.	1.7	22
23	Short-term soil inorganic N pulse after experimental fire alters invasive and native annual plant production in a Mojave Desert shrubland. Oecologia, 2010, 164, 253-263.	2.0	61
24	Desert wildfire and severe drought diminish survivorship of the longâ€lived Joshua tree (<i>Yucca) Tj ETQq0 0 0</i>	rgBT/Ove 1.7	rloc္ပန္ 10 Tf 50
25	Short-term effects of experimental fires on a Mojave Desert seed bank. Journal of Arid Environments,	2.4	33

25	2010, 74, 1302-1308.	2.4	33
26	Desert Tortoise Hibernation: Temperatures, Timing, and Environment. Copeia, 2007, 2007, 378-386.	1.3	30
27	EFFECTS OF DESERT WILDFIRES ON DESERT TORTOISE (GOPHERUS AGASSIZII) AND OTHER SMALL VERTEBRATES. Southwestern Naturalist, 2003, 48, 103-111.	0.1	59