
AndrÉ drigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4389914/publications.pdf Version: 2024-02-01

ANDRÃO RODRICHES

#	Article	IF	CITATIONS
1	Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nature Communications, 2017, 8, 15172.	5.8	152
2	Microfungal "Weeds―in the Leafcutter Ant Symbiosis. Microbial Ecology, 2008, 56, 604-614.	1.4	122
3	COEVOLUTION BETWEEN ATTINE ANTS AND ACTINOMYCETE BACTERIA: A REEVALUATION. Evolution; International Journal of Organic Evolution, 2008, 62, 2894-2912.	1.1	118
4	Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Critical Reviews in Biotechnology, 2018, 38, 600-619.	5.1	106
5	Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass and Bioenergy, 2012, 37, 243-250.	2.9	102
6	Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: Biomass-degrading enzymes production and characterization. Industrial Crops and Products, 2013, 42, 236-242.	2.5	98
7	Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Industrial Crops and Products, 2018, 122, 66-75.	2.5	91
8	Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. Journal of Applied Microbiology, 2015, 118, 928-939.	1.4	87
9	An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nature Communications, 2018, 9, 2478.	5.8	86
10	Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiology Ecology, 2011, 78, 244-255.	1.3	81
11	Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Brazilian Journal of Microbiology, 2012, 43, 1062-1071.	0.8	77
12	Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants. Antonie Van Leeuwenhoek, 2009, 96, 331-342.	0.7	73
13	Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants. Antonie Van Leeuwenhoek, 2008, 94, 517-526.	0.7	60
14	Monoculture of Leafcutter Ant Gardens. PLoS ONE, 2010, 5, e12668.	1.1	60
15	Variability of non-mutualistic filamentous fungi associated withAtta sexdens rubropilosa nests. Folia Microbiologica, 2005, 50, 421-5.	1.1	58
16	Thermophilic fungi in the new age of fungal taxonomy. Extremophiles, 2015, 19, 31-37.	0.9	53
17	Fungi from Admiralty Bay (King George Island, Antarctica) Soils and Marine Sediments. Microbial Ecology, 2019, 77, 12-24.	1.4	53
18	Bacterial microbiomes from vertically transmitted fungal inocula of the leaf utting ant <i>Atta texana</i> . Environmental Microbiology Reports, 2016, 8, 630-640.	1.0	50

#	Article	IF	CITATIONS
19	The molecular phylogenetics of <i>Trachymyrmex</i> Forel ants and their fungal cultivars provide insights into the origin and coevolutionary history of â€~higherâ€attine' ant agriculture. Systematic Entomology, 2019, 44, 939-956.	1.7	50
20	Biogeography of mutualistic fungi cultivated by leafcutter ants. Molecular Ecology, 2017, 26, 6921-6937.	2.0	49
21	Yeasts isolated from a fungus-growing ant nest, including the description of Trichosporon chiarellii sp. nov., an anamorphic basidiomycetous yeast. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1454-1459.	0.8	47
22	Hawksworthiomyces gen. nov. (Ophiostomatales), illustrates the urgency for a decision on how to name novel taxa known only from environmental nucleic acid sequences (ENAS). Fungal Biology, 2016, 120, 1323-1340.	1.1	44
23	Susceptibility of the ant-cultivated fungus Leucoagaricus gongylophorus (Agaricales: Basidiomycota) towards microfungi. Mycopathologia, 2006, 162, 115-119.	1.3	42
24	Production, partial characterization, and immobilization in alginate beads of an alkaline protease from a new thermophilic fungus Myceliophthora sp Journal of Microbiology, 2010, 48, 331-336.	1.3	37
25	Unraveling Trichoderma species in the attine ant environment: description of three new taxa. Antonie Van Leeuwenhoek, 2016, 109, 633-651.	0.7	37
26	The potential of compounds isolated from Xylaria spp. as antifungal agents against anthracnose. Brazilian Journal of Microbiology, 2018, 49, 840-847.	0.8	33
27	Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment. Scientific Reports, 2020, 10, 12384.	1.6	31
28	Evaluation of the catalytic specificity, biochemical properties, and milk clotting abilities of an aspartic peptidase from <i>Rhizomucor miehei</i> . Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1059-1069.	1.4	30
29	Isolation, identification and characterization of a novel high level β-glucosidase-producing Lichtheimia ramosa strain. Biocatalysis and Agricultural Biotechnology, 2013, 2, 377-384.	1.5	29
30	Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Brazilian Journal of Microbiology, 2012, 43, 1062-71.	0.8	29
31	Leaf-cutting ant faecal fluid and mandibular gland secretion: effects on microfungi spore germination. Brazilian Journal of Microbiology, 2008, 39, 64-67.	0.8	28
32	Production and partial characterization of serine and metallo peptidases secreted by Aspergillus fumigatus Fresenius in submerged and solid state fermentatio. Brazilian Journal of Microbiology, 2013, 44, 235-243.	0.8	28
33	Production of cold-adapted enzymes by filamentous fungi from King George Island, Antarctica. Polar Biology, 2018, 41, 2511-2521.	0.5	28
34	Yeasts found on an ephemeral reproductive caste of the leaf-cutting ant Atta sexdens rubropilosa. Antonie Van Leeuwenhoek, 2014, 106, 475-487.	0.7	27
35	Fungal communities in the garden chamber soils of leafâ€cutting ants. Journal of Basic Microbiology, 2014, 54, 1186-1196.	1.8	27
36	Applications and Benefits of Thermophilic Microorganisms and Their Enzymes for Industrial Biotechnology. Fungal Biology, 2016, , 459-492.	0.3	26

#	Article	IF	CITATIONS
37	Pectinases From Sphenophorus levis Vaurie, 1978 (Coleoptera: Curculionidae): Putative Accessory Digestive Enzymes. Journal of Insect Science, 2015, 15, 5-5.	0.6	23
38	Shared <i>Escovopsis</i> parasites between leaf-cutting and non-leaf-cutting ants in the higher attine fungus-growing ant symbiosis. Royal Society Open Science, 2015, 2, 150257.	1.1	23
39	Specialized Fungal Parasites and Opportunistic Fungi in Gardens of Attine Ants. Psyche: Journal of Entomology, 2012, 2012, 1-9.	0.4	22
40	Generation of Nutrients and Detoxification: Possible Roles of Yeasts in Leaf-Cutting Ant Nests. Insects, 2012, 3, 228-245.	1.0	22
41	Comparative analysis of fungal communities in colonies of two leaf-cutting ant species with different substratum preferences. Fungal Ecology, 2016, 21, 68-75.	0.7	22
42	Microbial culture collections as pillars for promoting fungal diversity, conservation and exploitation. Fungal Genetics and Biology, 2013, 60, 2-8.	0.9	21
43	A novel lipolytic yeast Meyerozyma guilliermondii: Efficient and low-cost production of acid and promising feed lipase using cheese whey. Biocatalysis and Agricultural Biotechnology, 2020, 24, 101565.	1.5	21
44	Escovopsis trichodermoides sp. nov., isolated from a nest of the lower attine ant Mycocepurus goeldii. Antonie Van Leeuwenhoek, 2015, 107, 731-740.	0.7	20
45	Marine-derived fungus Aspergillus cf. tubingensis LAMAI 31: a new genetic resource for xylanase production. AMB Express, 2016, 6, 25.	1.4	20
46	How Do Leaf-Cutting Ants Recognize Antagonistic Microbes in Their Fungal Crops?. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	20
47	Fungal diversity associated with Brazilian energy transmission towers. Fungal Diversity, 2010, 44, 53-63.	4.7	19
48	Starmerella aceti f.a., sp. nov., an ascomycetous yeast species isolated from fungus garden of the leafcutter ant Acromyrmex balzani. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 1428-1433.	0.8	19
49	Production and Catalytic Properties of Amylases fromLichtheimia ramosaandThermoascus aurantiacusby Solid-State Fermentation. Scientific World Journal, The, 2016, 2016, 1-10.	0.8	19
50	Nature of the interactions between hypocrealean fungi and the mutualistic fungus of leaf-cutter ants. Antonie Van Leeuwenhoek, 2017, 110, 593-605.	0.7	19
51	Nesting Biology and Fungiculture of the Fungus-Growing Ant, <i>Mycetagroicus cerradensis</i> : New Light on the Origin of Higher Attine Agriculture. Journal of Insect Science, 2011, 11, 1-14.	0.6	18
52	New Light on the Systematics of Fungi Associated with Attine Ant Gardens and the Description of Escovopsis kreiselii sp. nov PLoS ONE, 2015, 10, e0112067.	1.1	18
53	Pathogenic nature of <i>Syncephalastrum</i> in <i>Atta sexdens rubropilosa</i> fungus gardens. Pest Management Science, 2017, 73, 999-1009.	1.7	18
54	Diversity of endophytic fungi in Eucalyptus microcorys assessed by complementary isolation methods. Mycological Progress, 2018, 17, 719-727.	0.5	18

#	Article	IF	CITATIONS
55	Î ² -glucosidase from thermophilic fungus Thermoascus crustaceus: production and industrial potential. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20191349.	0.3	18
56	Fungal communities in gardens of the leafcutter ant Atta cephalotes in forest and cabruca agrosystems of southern Bahia State (Brazil). Fungal Biology, 2015, 119, 1170-1178.	1.1	17
57	Fungal communities in pressmud composting harbour beneficial and detrimental fungi for human welfare. Microbiology (United Kingdom), 2016, 162, 1147-1156.	0.7	17
58	Xylarenones Câ^'E from an Endophytic Fungus Isolated from <i>Alibertia macrophylla</i> . Journal of Natural Products, 2011, 74, 1353-1357.	1.5	16
59	High cellulolytic activities in filamentous fungi isolated from an extreme oligotrophic subterranean environment (Catão cave) in Brazil. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20180583.	0.3	16
60	Filamentous fungi vectored by ants (Hymenoptera: Formicidae) in a public hospital in north-eastern Brazil. Journal of Hospital Infection, 2013, 83, 200-204.	1.4	15
61	A metabolic pathway assembled by enzyme selection may support herbivory of leaf-cutter ants on plant starch. Journal of Insect Physiology, 2013, 59, 525-531.	0.9	14
62	Broad <scp><i>E</i></scp> <i>scovopsis</i> â€inhibition activity of <scp><i>P</i></scp> <i>seudonocardia</i> associated with <scp><i>T</i></scp> <i>rachymyrmex</i> ants. Environmental Microbiology Reports, 2014, 6, 339-345.	1.0	14
63	Biochemical properties and evaluation of washing performance in commercial detergent compatibility of two collagenolytic serine peptidases secreted by <i>Aspergillus fischeri</i> and <i>Penicillium citrinum</i> . Preparative Biochemistry and Biotechnology, 2017, 47, 282-290.	1.0	14
64	Genome mining for peptidases in heat-tolerant and mesophilic fungi and putative adaptations for thermostability. BMC Genomics, 2018, 19, 152.	1.2	14
65	Ecology of Thermophilic Fungi. , 2019, , 39-57.		14
66	Filamentous fungi found on foundress queens of leafâ€cutting ants (Hymenoptera: Formicidae). Journal of Applied Entomology, 2010, 134, 342-345.	0.8	13
67	Anti- <i>Candida</i> Properties of Urauchimycins from Actinobacteria Associated with <i>Trachymyrmex</i> Ants. BioMed Research International, 2013, 2013, 1-8.	0.9	13
68	Trichoderma asperelloides Spores Downregulate dectin1/2 and TLR2 Receptors of Mice Macrophages and Decrease Candida parapsilosis Phagocytosis Independent of the M1/M2 Polarization. Frontiers in Microbiology, 2017, 8, 1681.	1.5	13
69	Antifungal compounds with anticancer potential from Trichoderma sp. P8BDA1F1, an endophytic fungus from Begonia venosa. Brazilian Journal of Microbiology, 2020, 51, 989-997.	0.8	13
70	Filamentous Fungi Isolates of Contaminated Sediment in the Amazon Region with the Potential for Benzo(a)pyrene Degradation. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	12
71	Yeasts in the attine ant–fungus mutualism: Diversity, functional roles, and putative biotechnological applications. Yeast, 2022, 39, 25-39.	0.8	12
72	Fungal Endophyte Communities in Begonia Species from the Brazilian Atlantic Rainforest. Current Microbiology, 2018, 75, 441-449.	1.0	11

#	Article	IF	CITATIONS
73	Filamentous fungi found in Atta sexdens rubropilosa colonies after treatment with different toxic bait formulations. Journal of Applied Entomology, 2011, 135, 326-331.	0.8	10
74	Terrestrial filamentous fungi from Gruta do Catão (São Desidério, Bahia, Northeastern Brazil) show high levels of cellulose degradation. Journal of Cave and Karst Studies, 2016, 78, 208-217.	0.3	10
75	Leaf-cutting ant faecal fluid and mandibular gland secretion: effects on microfungi spore germination. Brazilian Journal of Microbiology, 2008, 39, 64-7.	0.8	10
76	Escovopsis kreiselii specialization to its native hosts in the fungiculture of the lower attine ant Mycetophylax morschi. Antonie Van Leeuwenhoek, 2019, 112, 305-317.	0.7	9
77	Complementary Contribution of Fungi and Bacteria to Lignocellulose Digestion in the Food Stored by a Neotropical Higher Termite. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	9
78	Host Susceptibility Modulates Escovopsis Pathogenic Potential in the Fungiculture of Higher Attine Ants. Frontiers in Microbiology, 2021, 12, 673444.	1,5	9
79	Wickerhamiella kiyanii f.a., sp. nov. and Wickerhamiella fructicola f.a., sp. nov., two yeasts isolated from native plants of Atlantic rainforest in Brazil. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2152-2158.	0.8	8
80	Biology of the relict fungus-farming ant Apterostigma megacephala Lattke, including descriptions of the male, gyne, and larva. Insectes Sociaux, 2017, 64, 329-346.	0.7	8
81	More pieces to a huge puzzle: Two new Escovopsis species from fungus gardens of attine ants. MycoKeys, 2019, 46, 97-118.	0.8	8
82	Fungi inhabiting attine ant colonies: reassessment of the genus Escovopsis and description of Luteomyces and Sympodiorosea gens. nov IMA Fungus, 2021, 12, 23.	1.7	8
83	Production of xylanase by a new strain of Thermoascus aurantiacus: obtainment of enzymatic extract with reduced cellulolytic activity for application in pulp and paper industries. Bioscience Journal, 0, , 1040-1048.	0.4	8
84	Determination of Specificity and Biochemical Characteristics of Neutral Protease Isolated from Myceliophthora thermophila. Protein and Peptide Letters, 2015, 22, 972-982.	0.4	8
85	Antimicrobial activity of crude extracts of endophytic fungi from Oryctanthus alveolatus (Kunth) Kuijt (Mistletoe). African Journal of Microbiology Research, 2018, 12, 263-268.	0.4	7
86	Soluble Compounds of Filamentous Fungi Harm the Symbiotic Fungus of Leafcutter Ants. Current Microbiology, 2018, 75, 1602-1608.	1.0	7
87	Preliminary List of Microfungi Found in <i>Paratrechina longicornis</i> (Hymenoptera: Formicidae). Florida Entomologist, 2010, 93, 651-653.	0.2	6
88	Intraspecific variation and emendation of Hannaella kunmingensis. Mycological Progress, 2013, 12, 157-165.	0.5	6
89	Prevalence of the genus Cladosporium on the integument of leaf-cutting ants characterized by 454 pyrosequencing. Antonie Van Leeuwenhoek, 2016, 109, 1235-1243.	0.7	6
90	Escovopsioides as a fungal antagonist of the fungus cultivated by leafcutter ants. BMC Microbiology, 2018, 18, 130.	1.3	6

#	Article	IF	CITATIONS
91	Secondary metabolites produced by endophytic fungi: novel antifungal activity of fumiquinone B. Acta Scientiarum - Biological Sciences, 0, 41, e48785.	0.3	6
92	Lack of fungal cultivar fidelity and low virulence of Escovopsis trichodermoides. Fungal Ecology, 2020, 45, 100944.	0.7	6
93	Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Frontiers in Microbiology, 2022, 13, .	1.5	5
94	Taxonomic studies on <l>Mucor inaequisporus,</l> isolated for the first time in South America. Mycotaxon, 2013, 124, 219-229.	0.1	4
95	Absence of the Parasite Escovopsis in Fungus Garden Pellets Carried by Gynes of Atta sexdens. Sociobiology, 2015, 62, .	0.2	4
96	Fungal communities in different aged leaves of Eucalyptus microcorys F. Muell. Revista Brasileira De Botanica, 2019, 42, 499-508.	0.5	3
97	Assessment of fungi in soils of sugarcane crops and their potential for production of biomass-degrading enzymes. African Journal of Microbiology Research, 2014, 8, 3751-3760.	0.4	3
98	Climate Change Influences Basidiome Emergence of Leaf-Cutting Ant Cultivars. Journal of Fungi (Basel,) Tj ETQqO	0.0.rgBT 1.5	/Oyerlock 10
99	Amino Acid Supplementation Improves the Production of Extracellular Peptidases by Aspergillus Section Flavi and their Ionic Immobilization. Brazilian Archives of Biology and Technology, 0, 63, .	0.5	2

100	Distinct and enhanced hygienic responses of a leafâ€cutting ant toward repeated fungi exposures. Ecology and Evolution, 2022, 12, .	0.8	2
101	Investigation of Liquid and Solid Fermentation Processes of the Fungus Aspergillus fumigatus for Protease Production. Journal of Biotechnology, 2010, 150, 419-419.	1.9	1
102	Pathogenicity of filamentous fungi towards Atta sexdens rubropilosa (Hymenoptera: Formicidae). International Journal of Tropical Insect Science, 0, , 1.	0.4	1
103	Escovopsioides nivea is a non-specific antagonistic symbiont of ant-fungal crops. Fungal Ecology, 2022, 56, 101140.	0.7	1
104	Yeasts associated with the worker caste of the leaf-cutting ant Atta cephalotes under experimental conditions in Colombia. Archives of Microbiology, 2022, 204, 284.	1.0	0