Subith S Vasu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4389618/publications.pdf

Version: 2024-02-01

		172457	1	144013	
179	3,856 citations	29		57	
papers	citations	h-index		g-index	
183	183	183		2477	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Direct Kinetic Measurements of Criegee Intermediate (CH ₂ OO) Formed by Reaction of CH ₂ I with O ₂ . Science, 2012, 335, 204-207.	12.6	649
2	An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements. Combustion and Flame, 2018, 197, 423-438.	5.2	432
3	Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions. Combustion and Flame, 2008, 152, 125-143.	5.2	216
4	Shock tube ignition delay times and methane time-histories measurements during excess CO2 diluted oxy-methane combustion. Combustion and Flame, 2016, 164, 152-163.	5.2	133
5	The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves. Shock Waves, 2009, 19, 113-123.	1.9	98
6	Measurements and interpretation of shock tube ignition delay times in highly CO2 diluted mixtures using multiple diagnostics. Combustion and Flame, 2017, 180, 63-76.	5.2	92
7	Review: laser ignition for aerospace propulsion. Propulsion and Power Research, 2016, 5, 1-21.	4.3	86
8	New insights into the shock tube ignition of H2/O2 at low to moderate temperatures using high-speed end-wall imaging. Combustion and Flame, 2018, 187, 11-21.	5.2	74
9	The effect of oxygenates on soot formation in rich heptane mixtures: A shock tube study. Fuel, 2009, 88, 1901-1906.	6.4	70
10	Ignition delay times of methane and hydrogen highly diluted in carbon dioxide at high pressures up to 300 atm. Proceedings of the Combustion Institute, 2019, 37, 4555-4562.	3.9	69
11	Experimental Study of the Rate of OH + HO ₂ â†' H ₂ O + O ₂ at High Temperatures Using the Reverse Reaction. Journal of Physical Chemistry A, 2010, 114, 5520-5525.	2.5	60
12	A shock tube and laser absorption study of ignition delay times and OH reaction rates of ketones: 2-Butanone and 3-buten-2-one. Combustion and Flame, 2014, 161, 725-734.	5.2	59
13	A coordinated investigation of the combustion chemistry of diisopropyl ketone, a prototype for biofuels produced by endophytic fungi. Combustion and Flame, 2014, 161, 711-724.	5.2	54
14	Shock Tube Study of Syngas Ignition in Rich CO ₂ Mixtures and Determination of the Rate of H + O ₂ + CO <s< td=""><td>5.1</td><td>53</td></s<>	5.1	53
15	Shock Tube Study of Methylcyclohexane Ignition over a Wide Range of Pressure and Temperature. Energy &	5.1	52
16	Measurements of the reaction of OH with n-butanol at high-temperatures. Chemical Physics Letters, 2010, 497, 26-29.	2.6	51
17	Shock Tube/Laser Absorption Measurements of the Reaction Rates of OH with Ethylene and Propene. Journal of Physical Chemistry A, 2010, 114, 11529-11537.	2.5	48
18	A comprehensive experimental and kinetic modeling study of 1- and 2-pentene. Combustion and Flame, 2021, 223, 166-180.	5.2	47

#	Article	IF	CITATIONS
19	OH time-histories during oxidation of n-heptane and methylcyclohexane at high pressures and temperatures. Combustion and Flame, 2009, 156, 736-749.	5.2	45
20	Fuel-rich n-heptane oxidation: A shock tube and laser absorption study. Combustion and Flame, 2017, 185, 220-233.	5.2	42
21	Reactions of OH with Butene Isomers: Measurements of the Overall Rates and a Theoretical Study. Journal of Physical Chemistry A, 2011, 115, 2549-2556.	2.5	41
22	A comprehensive experimental and improved kinetic modeling study on the pyrolysis and oxidation of propyne. Proceedings of the Combustion Institute, 2021, 38, 479-488.	3.9	41
23	High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO2 Dilution. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, .	2.3	38
24	Measurements of Propanal Ignition Delay Times and Species Time Histories Using Shock Tube and Laser Absorption. International Journal of Chemical Kinetics, 2016, 48, 679-690.	1.6	37
25	Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	2.3	34
26	High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis. Combustion and Flame, 2017, 177, 207-218.	5.2	33
27	The influence of iso-butene kinetics on the reactivity of di-isobutylene and iso-octane. Combustion and Flame, 2020, 222, 186-195.	5.2	31
28	Measuring the effectiveness of high-performance Co-Optima biofuels on suppressing soot formation at high temperature. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3451-3460.	7.1	31
29	On the High-Temperature Combustion of <i>n</i> -Butanol: Shock Tube Data and an Improved Kinetic Model. Energy & Samp; Fuels, 2013, 27, 7072-7080.	5.1	30
30	Co-optima fuels combustion: A comprehensive experimental investigation of prenol isomers. Fuel, 2019, 254, 115630.	6.4	30
31	High-pressure shock tube study of ethanol oxidation: Ignition delay time and CO time-history measurements. Combustion and Flame, 2020, 212, 486-499.	5.2	30
32	Shock-Tube Experiments and Kinetic Modeling of Toluene Ignition. Journal of Propulsion and Power, 2010, 26, 776-783.	2.2	29
33	Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	2.3	29
34	Broadband mid-infrared optical parametric oscillator for dynamic high-temperature multi-species measurements in reacting systems. Optics Letters, 2020, 45, 491.	3.3	27
35	Chemical Reaction CO+OH [•] → CO ₂ +H [•] Autocatalyzed by Carbon Dioxide: Quantum Chemical Study of the Potential Energy Surfaces. Journal of Physical Chemistry A, 2016, 120, 6023-6028.	2.5	26
36	An experimental and detailed kinetic modeling study of the pyrolysis and oxidation of allene and propyne over a wide range of conditions. Combustion and Flame, 2021, 233, 111578.	5.2	26

3

#	Article	IF	Citations
37	Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3  μm and pumped by an Er-fiber laser. Optics Letters, 2017, 42, 4756.	3.3	25
38	High-Temperature Measurements and a Theoretical Study of the Reaction of OH with 1,3-Butadiene. Journal of Physical Chemistry A, 2010, 114, 8312-8318.	2.5	24
39	Laser Ignition and Flame Speed Measurements in Oxy-Methane Mixtures Diluted With CO2. Journal of Energy Resources Technology, Transactions of the ASME, 2016, 138, .	2.3	24
40	High-Speed Imaging and Measurements of Ignition Delay Times in Oxy-Syngas Mixtures With High CO2 Dilution in a Shock Tube. Journal of Engineering for Gas Turbines and Power, 2017, 139, .	1.1	24
41	Shock Tube/Laser Absorption and Kinetic Modeling Study of Triethyl Phosphate Combustion. Journal of Physical Chemistry A, 2018, 122, 3829-3836.	2.5	23
42	Improved combustion kinetic model and HCCI engine simulations of di-isopropyl ketone ignition. Fuel, 2016, 164, 141-150.	6.4	22
43	Ignition delay time and speciation of dibutyl ether at high pressures. Combustion and Flame, 2021, 223, 98-109.	5.2	22
44	DMMP pyrolysis and oxidation studies at high temperature inside a shock tube using laser absorption measurements of CO. Combustion and Flame, 2020, 214, 14-24.	5.2	21
45	Propionaldehyde infrared cross-sections and band strengths. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 152, 107-113.	2.3	20
46	Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics. Journal of Physical Chemistry A, 2017, 121, 3728-3735.	2.5	19
47	High temperature infrared absorption cross sections of methane near 3.4µm in Ar and CO2 mixtures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 206, 36-45.	2.3	19
48	Ignition Delay Times of Oxy-Syngas and Oxy-Methane in Supercritical CO2 Mixtures for Direct-Fired Cycles. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	1.1	19
49	A Light-Emitting Diode- (LED-) Based Absorption Sensor for Simultaneous Detection of Carbon Monoxide and Carbon Dioxide. Applied Spectroscopy, 2016, 70, 962-971.	2.2	18
50	Quantum Chemical Study of CH ₃ + O ₂ Combustion Reaction System: Catalytic Effects of Additional CO ₂ Molecule. Journal of Physical Chemistry A, 2017, 121, 5681-5689.	2.5	18
51	Thermal and Transport Properties for the Simulation of Direct-Fired sCO2 Combustor. Journal of Engineering for Gas Turbines and Power, 2017, 139, .	1.1	18
52	An experimental, theoretical, and modeling study of the ignition behavior of cyclopentanone. Proceedings of the Combustion Institute, 2019, 37, 657-665.	3.9	18
53	Infrared absorption cross sections of several organo-phosphorous chemical-weapon simulants. Journal of Molecular Spectroscopy, 2019, 355, 59-65.	1.2	18
54	Low temperature (550–700 K) oxidation pathways of cyclic ketones: dominance of HO ₂ -elimination channels yielding conjugated cyclic coproducts. Physical Chemistry Chemical Physics, 2015, 17, 12124-12134.	2.8	17

#	Article	IF	CITATIONS
55	Molecular Dynamics Study of Combustion Reactions in a Supercritical Environment. Part 1: Carbon Dioxide and Water Force Field Parameters Refitting and Critical Isotherms of Binary Mixtures. Energy & Energy & Fuels, 2016, 30, 9622-9627.	5.1	17
56	Potential Energy Surfaces for the Reactions of HO ₂ Radical with CH ₂ O and HO ₂ in CO ₂ Environment. Journal of Physical Chemistry A, 2016, 120, 7681-7688.	2.5	17
57	Reflected shock-initiated ignition probed via simultaneous lateral and endwall high-speed imaging with a transparent, cylindrical test-section. Combustion and Flame, 2021, 224, 43-53.	5.2	17
58	Probing the Effects of NOx and SOx Impurities on Oxy-Fuel Combustion in Supercritical CO2: Shock Tube Experiments and Chemical Kinetic Modeling. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	2.3	17
59	Acousto-optically modulated quantum cascade laser for high-temperature reacting systems thermometry. Optics Letters, 2019, 44, 1435.	3.3	17
60	Design and development of a porous heterogeneous combustor for efficient heat production by combustion of liquid and gaseous fuels. Applied Energy, 2016, 179, 228-236.	10.1	16
61	Theoretical Calculation of Reaction Rates and Combustion Kinetic Modeling Study of Triethyl Phosphate (TEP). Journal of Physical Chemistry A, 2019, 123, 4764-4775.	2.5	15
62	Oxidation and pyrolysis of methyl propyl ether. International Journal of Chemical Kinetics, 2021, 53, 915-938.	1.6	15
63	Laminar Burning Velocity Measurements in DIPK-An Advanced Biofuel. SAE International Journal of Fuels and Lubricants, 0, 10, 432-441.	0.2	14
64	Revealing the critical role of radical-involved pathways in high temperature cyclopentanone pyrolysis. Combustion and Flame, 2020, 216, 280-292.	5.2	14
65	Characterization of a new ultra-high pressure shock tube facility for combustion and propulsion studies. Review of Scientific Instruments, 2022, 93, .	1.3	14
66	The Effect of Diluent Gases on High-Pressure Laminar Burning Velocity Measurements of an Advanced Biofuel Ketone. SAE International Journal of Fuels and Lubricants, 0, 11, 273-286.	0.2	13
67	High-Pressure Oxy-Syngas Ignition Delay Times With CO2 Dilution: Shock Tube Measurements and Comparison of the Performance of Kinetic Mechanisms. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	1.1	13
68	Influence of the double bond position in combustion chemistry of methyl butene isomers: A shock tube and laser absorption study. International Journal of Chemical Kinetics, 2020, 52, 739-751.	1.6	13
69	Effect of catalytically active Ce 0.8 Gd 0.2 O 1.9 coating on the heterogeneous combustion of methane within MgO stabilized ZrO 2 porous ceramics. Combustion and Flame, 2017, 180, 32-39.	5.2	12
70	Molecular Dynamics Study of Combustion Reactions in a Supercritical Environment. Part 2: Boxed MD Study of CO + OH â†' CO ₂ + H Reaction Kinetics. Journal of Physical Chemistry A, 2018, 122, 897-908.	2.5	12
71	Quantum chemical and master equation study of OH + CH ₂ O â†' H ₂ O + CHO reaction rates in supercritical CO ₂ environment. International Journal of Chemical Kinetics, 2019, 51, 42-48.	1.6	12
72	Effects of High Fuel Loading and CO2 Dilution on Oxy-Methane Ignition Inside a Shock Tube at High Pressure. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	2.3	12

#	Article	IF	CITATIONS
73	Flow stabilized porous heterogeneous combustor. Part I: Design and development. Fuel Processing Technology, 2017, 159, 353-362.	7.2	11
74	Thermal and Acoustic Performance of Al ₂ O ₃ , MgO–ZrO ₂ , and SiC Porous Media in a Flow-Stabilized Heterogeneous Combustor. Energy & Displayed Brown (2017) (20	5.1	11
75	Ellipsometric Measurements of the Thermal Stability of Alternative Fuels. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, 062207-622078.	2.3	11
76	Products and Pathways of Aldehydes Oxidation in the Negative Temperature Coefficient Region. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, .	2.3	11
77	Catalytic Effect of Carbon Dioxide on Reaction OH + CO → H + CO ₂ in Supercritical Environment: Master Equation Study. Journal of Physical Chemistry A, 2018, 122, 6355-6359.	2.5	11
78	Pd enhanced WC catalyst to promote heterogeneous methane combustion. Applied Thermal Engineering, 2017, 114, 663-672.	6.0	10
79	Subcooled Flow Boiling of Carbon Dioxide Near the Critical Point Inside a Microchannel. Physical Review Applied, 2020, 14, .	3.8	10
80	High accuracy machine learning identification of fentanyl-relevant molecular compound classification via constituent functional group analysis. Scientific Reports, 2020, 10, 13569.	3.3	9
81	Laminar Burning Velocities of High-Performance Fuels Relevant to the Co-Optima Initiative. SAE International Journal of Advances and Current Practices in Mobility, 0, 1, 1139-1147.	2.0	9
82	Large Eddy Simulation of an Enclosed Turbulent Reacting Methane Jet With the Tabulated Premixed Conditional Moment Closure Method. Journal of Engineering for Gas Turbines and Power, 2016, 138, .	1.1	8
83	Accurate prediction of terahertz spectra of molecular crystals of fentanyl and its analogs. Scientific Reports, 2021, 11, 4062.	3. 3	8
84	Shock Tube Demonstration of Acousto-Optically Modulated Quantum Cascade Laser as a Broadband, Time-Resolved Combustion Diagnostic. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	2.3	8
85	A General Study of Counterflow Diffusion Flames for Supercritical CO2 Combustion. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	1.1	8
86	Measurements of Density and Sound Speed in Mixtures Relevant to Supercritical CO2 Cycles. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	2.3	8
87	Shock tube investigation of high-temperature, extremely-rich oxidation of several co-optima biofuels for spark-ignition engines. Combustion and Flame, 2022, 236, 111794.	5.2	8
88	Flow stabilized porous heterogeneous combustor. Part II: Operational parameters and the acoustic emission. Fuel Processing Technology, 2017, 159, 412-420.	7.2	7
89	Hazardous Gas Detection Sensor Using Broadband Light-Emitting Diode-Based Absorption Spectroscopy for Space Applications. New Space, 2018, 6, 28-36.	0.8	7
90	Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. 6. Computational Kinetics of Reactions between Hydrogen Atom and Oxygen Molecule H + O ₂ ⇌ HO + O and H + O ₂ ⇌ HO ₂ . Journal of Physical Chemistry A, 2019, 123, 10772-10781.	2.5	7

#	Article	IF	CITATIONS
91	Methane Ignition Delay Times in CO2 Diluted Mixtures in a Shock Tube. , 2015, , .		6
92	Molecular Dynamics Study of Combustion Reactions in Supercritical Environment. Part 3: Boxed MD Study of CH ₃ + HO ₂ â†' CH ₃ O + OH Reaction Kinetics. Journal of Physical Chemistry A, 2018, 122, 3337-3345.	2.5	6
93	LaCoO3 catalytically enhanced MgO partially stabilized ZrO2 in heterogeneous methane combustion. Experimental Thermal and Fluid Science, 2018, 90, 330-335.	2.7	6
94	Molecular dynamics of combustion reactions in supercritical carbon dioxide. Part 4: boxed MD study of formyl radical dissociation and recombination. Journal of Molecular Modeling, 2019, 25, 35.	1.8	6
95	Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C ₂ H ₆ ⇌CH ₃ + CH ₃ . Journal of Physical Chemistry A, 2019, 123, 4776-4784.	2.5	6
96	Selective terahertz absorber for angle and polarization-independent spectral sensing. Optics Letters, 2022, 47, 1514.	3.3	6
97	Ignition and Flame Propagation in Oxy-Methane Mixtures Diluted With CO2., 2015,,.		5
98	Laser-induced fluorescence thermometry of supercritical CO ₂ flows inside a micro-channel. Optics Letters, 2021, 46, 1924.	3.3	5
99	Direct measurement of reaction rate for decomposition of diisopropyl methylphosphonate at high temperature using shock tube and laser absorption. International Journal of Chemical Kinetics, 2022, 54, 371-380.	1.6	5
100	Shock Tube Ignition Studies of Advanced Biofuels. , 2016, , .		4
101	High-Speed Imaging of the Dynamics of H $<$ sub $>$ 2 $<$ /sub $>$ /O $<$ sub $>$ 2 $<$ /sub $>$ Ignition at Low to Moderate Temperatures in a Shock Tube. , 2017, , .		4
102	Ignition Delay Times of High Pressure Oxy-Methane Combustion With High Levels of CO2 Dilution. , 2017, , .		4
103	Experimental and Kinetic Modeling Study of Laminar Burning Velocities of Cyclopentanone and Its Binary Mixtures with Ethanol and n-Propanol. Energy & Energy & 11408, 2020, 34, 11408-11416.	5.1	4
104	Influence of Equation-of-States on Supercritical CO2 Combustion Mixtures. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	2.3	4
105	Planar Laser-Induced Fluorescence Experiments and Modeling Study of Jets in Crossflow. Journal of Fluids Engineering, Transactions of the ASME, 2016, 138, .	1.5	3
106	Reacting Unsteady Reynolds-Averaged Navier–Stokes with the Tabulated Premixed Conditional Moment Closure Method. Journal of Propulsion and Power, 2017, 33, 704-718.	2,2	3
107	Assessment of Detailed and Reduced JetSurF 2.0 Mechanisms Using Conditional Moment Closure Method., 2017,,.		3
108	MHz-Rate Measurements of Time-Resolved Species Concentrations in Shock Heated Chemical Weapon Simulants. , 2018, , .		3

#	Article	IF	Citations
109	Far-infrared spectrally selective LiTaO3 and AlN pyroelectric detectors using resonant subwavelength metal surface structures. MRS Advances, 2020, 5, 2005-2012.	0.9	3
110	A General Study of Counterflow Diffusion Flames for Supercritical CO2 Mixtures., 2019,,.		3
111	Shock Tube Ignition and CH ₄ Time-Histories during Propanal Oxidation., 2016,,.		2
112	Time-Resolved Measurements of Intermediate Concentrations in Fuel-Rich n-Heptane Oxidation Behind Reflected Shock Waves. , 2017, , .		2
113	Dynamics of Ignition observed through High Speed Imaging inside a shock tube. , 2017, , .		2
114	High-Altitude Balloon Flight Demonstration of LED-Based NDIR Multi-Gas Sensor for Space Applications. , $2017, \dots$		2
115	A Strategy of Reactant Mixing in Methane Direct-Fired sCO2 Combustors. , 2018, , .		2
116	High-speed 4-D Imaging Study of Isooctane Combustion in a Shock Tube. , 2019, , .		2
117	Elucidating the differences in oxidation of high-performance \hat{l} ±- and \hat{l} ²- diisobutylene biofuels via Synchrotron photoionization mass spectrometry. Scientific Reports, 2020, 10, 21776.	3.3	2
118	Ammonia Hydrogen Ignition Measurements for Clean Aircraft Propulsion. , 2022, , .		2
119	LES Simulation of an Enclosed Turbulent Reacting Methane Jet With the Tabulated Premixed CMC Method. , $2015, $, .		1
120	Experimental study of transverse jet mapping using PLIF. , 2015, , .		1
121	Pyrolysis of RP-2 and Surrogate Fuels in a Jet Stirred Reactor Coupled with Synchrotron Photo Ionization Mass Spectrometry. , 2017, , .		1
122	Performance of a Laser Ignited Multicylinder Lean Burn Natural Gas Engine. Journal of Engineering for Gas Turbines and Power, 2017, 139, .	1.1	1
123	The Influence of Elevated Pressures on the Methane Combustion in N2 and Co2 Dilutions. , 2017, , .		1
124	Is Ignition in a Shock Tube Homogeneous? An Experimental Study Behind Reflected Shock Waves. , 2018, ,		1
125	Development of a Global Mechanism for Oxy-Methane Combustion in a CO2 Environment. , 2018, , .		1
126	Towards a laser-absorption technique for ultra-fast, simultaneous temperature and concentration measurements inside pressure gain combustion devices. , 2019, , .		1

#	Article	IF	CITATIONS
127	Laminar burning velocity measurements in methyl ester/air mixtures. , 2019, , .		1
128	Design of External Cavity Quantum Cascade Lasers for Combustion and Explosion Diagnostics. , 2019, , .		1
129	Novel Diagnostic Technique for Ultra-Fast, Simultaneous Temperature and Concentration Measurements for Harsh Hypersonic Flows. , 2020, , .		1
130	Time-resolved measurements of key intermediate products during cyclopentanone pyrolysis in a shock tube. , 2020, , .		1
131	Ignition delay times of methane fuels at thrust chamber conditions in an ultra-high-pressure shock tube. , 2022, , .		1
132	Shock Tube and Flame Speed Measurements of 2,4,4-Trimethyl-1-Pentene: A Co-Optima Biofuel. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	2.3	1
133	Nonlinear Distortion of Traveling Waves in Non-Uniform Gasdynamic Flows. International Journal of Aeroacoustics, 2008, 7, 243-265.	1.3	0
134	Unsteady Rans Simulation of an Enclosed, Turbulent Reacting Methane Jet with the Premixed CMC Method. , 2015, , .		0
135	Combustion of Aldehydes in the Negative Temperature Coefficient Region: Products and Pathways. , 2016, , .		O
136	Jet Fuel Thermal Stability Investigations using Ellipsometry. , 2017, , .		0
137	Temperature Jump Pyrolysis Studies of RP-2 Fuel. , 2017, , .		O
138	High-Speed Imaging and Measurements of Ignition Delay Times in Oxy-Syngas Mixtures With High CO2 Dilution in a Shock Tube. , 2017, , .		0
139	Assessment of Dodecane Turbulent-Chemistry Interactions Using Computational Fluid Dynamics. , 2017,		О
140	Sarin simulants combustion at high temperature: Time-resolved laser absorption spectroscopy of intermediate products in a shock tube. , 2018 , , .		0
141	A Study of Methane and Hydrogen Ignition Delay Times in CO $<$ sub $>$ 2 $<$ /sub $>$ at High Pressures Near 40 atm. , 2018, , .		О
142	CO time-histories measurements behind reflected shockwaves during ignition of various gaseous fuels. , 2018, , .		O
143	A Study on Design Optimization of Direct-Fired sCO2 Combustors. , 2018, , .		0
144	High Pressure Ignition Delay Times Measurements and Comparison of the Performance of Several Oxy-Syngas Mechanisms Under High CO2 Dilution., 2018,,.		0

#	Article	IF	CITATIONS
145	First Demonstration of an Acousto-Optically Modulated Quantum Cascade Laser As a Broadband, Time-Resolved Combustion Diagnostic. , 2018, , .		O
146	A Reduced Kinetic Mechanism for Oxy/Methane sCO2 Combustor Simulations. , 2018, , .		0
147	Advancement of LED-based hazardous gas sensors for space applications. , 2018, , .		0
148	Pyrolysis of cyclopentanone: A shock tube and laser absorption study. , 2018, , .		0
149	Soot formation behind reflected shock waves in ethylene and oxygenated biofuels. , 2019, , .		0
150	A Counter-flow Diffusion Flame study for the Supercritical CO2Combustion., 2019,,.		0
151	Large Eddy Simulation Of Turbulent Reacting Flow Using Premixed Conditional Moment Closure Method. , 2019, , .		0
152	A shock tube and laser absorption study of CO time-histories during bio ether oxidation. , 2019, , .		0
153	Time-Resolved, Laser-Absorption Temperature Measurement in Shock Heated Mixtures with Reduced Beam Steering and Emission Noise. , 2019, , .		0
154	Cover Image, Volume 51, Issue 1. International Journal of Chemical Kinetics, 2019, 51, i.	1.6	0
155	High-temperature DMMP combustion measurements in a shock tube using laser absorption spectroscopy., 2020,,.		0
156	Multispecies Single Light-Emitting Diode Mid-Infrared Gas Sensor for Space Habitats and Vehicles. New Space, 2020, 8, 77-86.	0.8	0
157	High-Pressure Ignition and Flame Propagation Measurements of CO2Diluted Natural Gas/Oxidizer Mixtures for Advanced Rocket and Gas Turbine Combustors. , 2020, , .		0
158	Simultaneous measurements of carbon monoxide and ethylene time-histories during rich oxidation of a jet fuel surrogate behind reflected shock waves. , 2020, , .		0
159	Autoignition delay times measurements of linear unsaturated jet fuel compounds inside a shock tube. , 2020, , .		0
160	DIMP Pyrolysis at High Temperatures Behind Reflected Shock Waves. , 2020, , .		0
161	Characterization of a Laser Diagnostic Sensor for Gas Turbine Combustor Flows. , 2020, , .		0
162	Ignition delay time and CO time-history measurements in a shock tube during high performance jet fuel surrogate combustion. , 2020, , .		0

#	Article	IF	CITATIONS
163	Shock tube and laser absorption study of CO time-histories during combustion of branched alkenes. , 2020, , .		0
164	Laminar burning velocity measurements of high-performance jet fuel/air mixtures. , 2020, , .		0
165	Laser speciation measurements during shock tube ignition of cyclic jet and rocket fuel components. , 2020, , .		0
166	Comment on "Simultaneous lateral and endwall high-speed visualization of ignition in a circular shock tube―[Combustion and Flame 214 (2020) 263–265]. Combustion and Flame, 2020, 217, 37.	5.2	0
167	Shock tube/laser absorption measurements of the pyrolysis of butyl acetate isomers. , 2021, , .		0
168	Multi-species measurements during shock heated hydrocarbon pyrolysis with a broadband mid-IR OPO. , 2021, , .		0
169	Monolithic Multi-QCL For Temperature Measurements In Detonations. , 2021, , .		0
170	Octave-wide Gallium Phosphide OPO Centered at 3 ŵm and Pumped by an Er-fiber Laser. , 2017, , .		0
171	Ignition Delay Times of Methane and Hydrogen Highly Diluted in Carbon Dioxide. , 2019, , 151-157.		0
172	Acousto-Optically Modulated Quantum Cascade Laser (AOM QCL) for Combustion and Detonation Thermometry. , 2019, , .		0
173	Experimental Technique for Accurate, High-Temperature, Low-Pressure Measurement Conditions in Shock Tubes. , 2022, , .		0
174	Test Location Effects on Ignition Delay Times in Shock Tubes. , 2022, , .		0
175	Temperature Measurement inside Detonation Flows with Monolithic Multi-QCLS. , 2022, , .		0
176	Influence of Binary Diffusion Coefficients on Supercritical CO2Flame Characteristics of Methane/Natural Gas., 2022,,.		0
177	Soot Formation from a Bio-derived High Performance Jet Fuel. , 2022, , .		0
178	High Pressure Ignition Study of Methane and Natural Gas in Highly CO2 Diluted Mixtures. , 2022, , .		0
179	Development of a high temperature pyrolysis mechanism for cyclopentanone, a potential biofuel derived from biomass. , 2020, , .		0