Anne S Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4389478/publications.pdf Version: 2024-02-01

ANNE S MEVED

#	Article	IF	CITATIONS
1	Cataloguing the proteome: Current developments in single-molecule protein sequencing. Biophysics Reviews, 2022, 3, .	2.7	3
2	Three-dimensional printing of stimuli-responsive hydrogel with antibacterial activity. Bioprinting, 2021, 24, e00106.	5.8	19
3	Iron can be microbially extracted from Lunar and Martian regolith simulants and 3D printed into tough structural materials. PLoS ONE, 2021, 16, e0249962.	2.5	12
4	Bioprinting of Regenerative Photosynthetic Living Materials. Advanced Functional Materials, 2021, 31, 2011162.	14.9	41
5	Rethinking sustainability through synthetic biology. Nature Chemical Biology, 2021, 17, 630-631.	8.0	5
6	Scalable bacterial production of moldable and recyclable biomineralized cellulose with tunable mechanical properties. Cell Reports Physical Science, 2021, 2, 100464.	5.6	14
7	Biocompatible Graphene Oxide Nanosheets Densely Functionalized with Biologically Active Molecules for Biosensing Applications. ACS Applied Nano Materials, 2021, 4, 8334-8342.	5.0	17
8	Emergent Biological Endurance Depends on Extracellular Matrix Composition of Three-Dimensionally Printed <i>Escherichia coli</i> Biofilms. ACS Synthetic Biology, 2021, 10, 2997-3008.	3.8	19
9	Engineered proteins and three-dimensional printing of living materials. MRS Bulletin, 2020, 45, 1034-1038.	3.5	10
10	Bioproduced Polymers Self-Assemble with Graphene Oxide into Nanocomposite Films with Enhanced Mechanical Performance. ACS Nano, 2020, 14, 14731-14739.	14.6	49
11	Theoretical bioreactor design to perform microbial mining activities on mars. Acta Astronautica, 2020, 170, 354-364.	3.2	10
12	3D Printing for the Fabrication of Biofilm-Based Functional Living Materials. ACS Synthetic Biology, 2019, 8, 1564-1567.	3.8	79
13	Creation of Conductive Graphene Materials by Bacterial Reduction Using <i>Shewanella Oneidensis</i> . ChemistryOpen, 2019, 8, 888-895.	1.9	20
14	End-to-end mission design for microbial ISRU activities as preparation for a moon village. Acta Astronautica, 2019, 162, 216-226.	3.2	13
15	Biomimetic Materials: Bacterially Produced, Nacreâ€Inspired Composite Materials (Small 22/2019). Small, 2019, 15, 1970119.	10.0	1
16	Three-dimensional Patterning of Engineered Biofilms with a Do-it-yourself Bioprinter. Journal of Visualized Experiments, 2019, , .	0.3	9
17	Synthetic Biology for Multiscale Designed Biomimetic Assemblies: From Designed Self-Assembling Biopolymers to Bacterial Bioprinting. Biochemistry, 2019, 58, 2095-2104.	2.5	14
18	Bacterially Produced, Nacreâ€Inspired Composite Materials. Small, 2019, 15, e1805312.	10.0	25

ANNE S MEYER

#	Article	IF	CITATIONS
19	More than just a phase: the search for membraneless organelles in the bacterial cytoplasm. Current Genetics, 2019, 65, 691-694.	1.7	58
20	Printing of Patterned, Engineered <i>E.Âcoli</i> Biofilms with a Low-Cost 3D Printer. ACS Synthetic Biology, 2018, 7, 1328-1337.	3.8	67
21	Single-molecule peptide fingerprinting. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3338-3343.	7.1	64
22	Global DNA Compaction in Stationary-Phase Bacteria Does Not Affect Transcription. Cell, 2018, 174, 1188-1199.e14.	28.9	81
23	Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: Lab-scale and full-scale studies. Water Research, 2018, 144, 36-45.	11.3	25
24	A Straightforward Approach for 3D Bacterial Printing. ACS Synthetic Biology, 2017, 6, 1124-1130.	3.8	104
25	Influences of NOM composition and bacteriological characteristics on biological stability in a full-scale drinking water treatment plant. Chemosphere, 2016, 160, 189-198.	8.2	67
26	Single-Cell Analysis of the Dps Response to Oxidative Stress. Journal of Bacteriology, 2016, 198, 1662-1674.	2.2	25
27	Using bacteria to make improved, nacre-inspired materials. MRS Advances, 2016, 1, 559-564.	0.9	9
28	Hysteresis in DNA compaction by Dps is described by an Ising model. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4982-4987.	7.1	27
29	Essential validation methods for E. coli strains created by chromosome engineering. Journal of Biological Engineering, 2015, 9, 11.	4.7	6
30	DNA recognition by Escherichia coli CbpA protein requires a conserved arginine–minor-groove interaction. Nucleic Acids Research, 2015, 43, 2282-2292.	14.5	11
31	The DNA-Binding Protein from Starved Cells (Dps) Utilizes Dual Functions To Defend Cells against Multiple Stresses. Journal of Bacteriology, 2015, 197, 3206-3215.	2.2	113
32	The Escherichia coli Nucleoid in Stationary Phase. Advances in Applied Microbiology, 2013, 83, 69-86.	2.4	32
33	Application of an In vitro DNA Protection Assay to Visualize Stress Mediation Properties of the Dps Protein. Journal of Visualized Experiments, 2013, , e50390.	0.3	10
34	Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle. EMBO Journal, 2012, 31, 720-730.	7.8	80
35	A Gradient of ATP Affinities Generates an Asymmetric Power Stroke Driving the Chaperonin TRIC/CCT Folding Cycle. Cell Reports, 2012, 2, 866-877.	6.4	96
36	Proteolysis in the Escherichia coli heat shock response: a player at many levels. Current Opinion in Microbiology, 2011, 14, 194-199.	5.1	46

ANNE S MEYER

#	Article	IF	CITATIONS
37	Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT. Nature Structural and Molecular Biology, 2008, 15, 746-753.	8.2	91
38	Modeling of possible subunit arrangements in the eukaryotic chaperonin TRiC. Protein Science, 2006, 15, 1522-1526.	7.6	6
39	The Cotranslational Contacts between Ribosome-bound Nascent Polypeptides and the Subunits of the Hetero-oligomeric Chaperonin TRiC Probed by Photocross-linking. Journal of Biological Chemistry, 2005, 280, 28118-28126.	3.4	36
40	Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends in Cell Biology, 2004, 14, 598-604.	7.9	353
41	Closing the Folding Chamber of the Eukaryotic Chaperonin Requires the Transition State of ATP Hydrolysis. Cell, 2003, 113, 369-381.	28.9	195
42	The Hsp70 and TRiC/CCT Chaperone Systems Cooperate In Vivo To Assemble the Von Hippel-Lindau Tumor Suppressor Complex. Molecular and Cellular Biology, 2003, 23, 3141-3151.	2.3	120