Dhayalan Velauthapillai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4388886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of EG-Bi2S3 nanorods photocatalytic activity under visible light for dye degradation from aquatic system. Environmental Science and Pollution Research, 2023, 30, 71628-71636.	2.7	1
2	Heterostructured two dimensional materials of MXene and graphene by hydrothermal method for efficient hydrogen production and HER activities. International Journal of Hydrogen Energy, 2023, 48, 6478-6487.	3.8	15
3	PVP-assisted grass-like NiSe@ZnSe composite for environmental energy applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 8409-8416.	1.1	7
4	Electrochemical energy storage and conversion applications of CoSn(OH)6 materials. International Journal of Hydrogen Energy, 2022, 47, 41948-41955.	3.8	3
5	Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants. Chemosphere, 2022, 286, 131733.	4.2	46
6	Pristine and cobalt doped copper sulfide microsphere particles for seawater splitting. International Journal of Hydrogen Energy, 2022, 47, 37171-37182.	3.8	11
7	Surfactant-assisted tungsten sulfide mesoporous sphere for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 41984-41993.	3.8	5
8	Investigation of PEG directed Sb2WO6 for dyes removal from wastewater. Chemosphere, 2022, 291, 132677.	4.2	9
9	Synthesis of pure and lanthanum-doped barium ferrite nanoparticles for efficient removal of toxic pollutants. Journal of Hazardous Materials, 2022, 424, 127604.	6.5	17
10	Characterization of activated biomass carbon from tea leaf for supercapacitor applications. Chemosphere, 2022, 291, 132931.	4.2	29
11	Recent Progression of Flower Like ZnSe@MoSe2 Designed as an Electrocatalyst for Enhanced Supercapacitor Performance. Topics in Catalysis, 2022, 65, 684-693.	1.3	9
12	Bimetallic AC/Ag2CrO4/SnS heterostructure photoanode for energy conversion and storage: A self-powered Photocapacitor. Journal of Power Sources, 2022, 520, 230883.	4.0	6
13	Fabrication of Ce doped TiO2 for efficient organic pollutants removal from wastewater. Chemosphere, 2022, 293, 133540.	4.2	28
14	Exploration of a Bimetallic NiSe ₂ @CoSe ₂ Nanosphere as a Proficient Electrode for Electrochemical Activity. Energy & Fuels, 2022, 36, 1726-1734.	2.5	6
15	Electrochemical Enhancement of Binary CuSe2@MoSe2 Composite Nanorods for Supercapacitor Application. Topics in Catalysis, 2022, 65, 668-676.	1.3	7
16	Si@MXene/graphene crumbled spherical nanocomposites. International Journal of Energy Research, 2022, 46, 21548-21557.	2.2	3
17	Facile preparation and characterization of MXene@Platinum nanocomposite for energy conversion applications. Fuel, 2022, 317, 123493.	3.4	13
18	Air processed Cs2AgBiBr6 lead-free double perovskite high-mobility thin-film field-effect transistors. Scientific Reports, 2022, 12, 2455.	1.6	12

DHAYALAN VELAUTHAPILLAI

#	Article	IF	CITATIONS
19	Roles of Interfacial Modifiers in Inorganic Titania/Organic Poly(3-hexylthiophene) Heterojunction Hybrid Solar Cells. Nanomaterials, 2022, 12, 820.	1.9	0
20	PEG mediated tetragonal calcium molybdate nanostructures for electrochemical energy conversion applications. International Journal of Hydrogen Energy, 2022, 47, 26013-26022.	3.8	3
21	Facile hydrothermal synthesis of MXene@antimony nanoneedle composites for toxic pollutants removal. Environmental Research, 2022, 210, 112904.	3.7	11
22	Surfactant induced copper vanadate (β-Cu2V2O7, Cu3V2O8) for different textile dyes degradation. Environmental Research, 2022, 211, 112964.	3.7	6
23	One-step fabrication of copper sulfide catalysts for HER in natural seawater and their bifunctional properties in freshwater splitting. Fuel, 2022, 322, 124073.	3.4	15
24	ZnCo2O4/CNT composite for efficient supercapacitor electrodes. Ceramics International, 2022, 48, 24745-24750.	2.3	11
25	Rare earth metal (Sm)-doped NiMnO ₃ nanostructures for highly competent alkaline oxygen evolution reaction. Nanoscale Advances, 2022, 4, 2501-2508.	2.2	13
26	Carbonization and optimization of biomass waste for HER application. Fuel, 2022, 324, 124466.	3.4	6
27	Rare Earth-Doped MoS ₂ for Supercapacitor Application. Energy & Fuels, 2022, 36, 6476-6482.	2.5	21
28	Potential transition and post-transition metal sulfides as efficient electrodes for energy storage applications: review. RSC Advances, 2022, 12, 18041-18062.	1.7	27
29	Ultra- ordered array of CuCo2S4 microspheres on co-doped nitrogen, sulfur-porous graphene sheets with superior electrochemical performance for supercapacitor application. Energy Reports, 2022, 8, 7712-7723.	2.5	6
30	Cs2AgBiBr6 as a mixed anion perovskites for photovoltaic applications: A first-principle study. Materials Today: Proceedings, 2022, 64, 1783-1788.	0.9	1
31	Review on Perovskite Semiconductor Field–Effect Transistors and Their Applications. Nanomaterials, 2022, 12, 2396.	1.9	14
32	Ag doped ZnSnO3 nanocubes: Promotion on the charge storage mechanism for supercapacitors. Journal of Physics and Chemistry of Solids, 2022, 169, 110894.	1.9	1
33	Investigation of optimum Mn dopant level on TiO2 for dye degradation. Chemosphere, 2022, 306, 135574.	4.2	6
34	Microwave assisted solvothermal synthesis of quasi cubic F doped <scp> TiO ₂ </scp> nanostructures and its performance as dye sensitized solar cell photoanode. International Journal of Energy Research, 2021, 45, 17259-17268.	2.2	17
35	<scp>UV</scp> â€aided graphene oxide reduction by <scp> TiO ₂ </scp> towards <scp> TiO ₂ </scp> /reduced graphene oxide composites for dyeâ€sensitized solar cells. International Journal of Energy Research, 2021, 45, 17220-17232.	2.2	24
36	Biomedical application of single anatase phase TiO2 nanoparticles with addition of Rambutan (Nephelium lappaceumÂL.) fruit peel extract. Applied Nanoscience (Switzerland), 2021, 11, 699-708.	1.6	6

DHAYALAN VELAUTHAPILLAI

#	Article	IF	CITATIONS
37	Superior supercapacitive performance of Cu ₂ MnSnS ₄ asymmetric devices. Nanoscale Advances, 2021, 3, 486-498.	2.2	31
38	High performance MnSn(OH)6 electrodes for energy conversion application. Materials Letters, 2021, 282, 128888.	1.3	4
39	Heterostructured SmCoO3/rGO composite for high-energy hybrid supercapacitors. Carbon, 2021, 172, 613-623.	5.4	59
40	Energy Storage Applications of CdMoO4 Microspheres. Jom, 2021, 73, 1546-1551.	0.9	6
41	Copper molybdate nanoparticles for electrochemical water splitting application. International Journal of Hydrogen Energy, 2021, 46, 7701-7711.	3.8	15
42	Solvothermal synthesis of CoMoO4 nanostructures for electrochemical applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 5989-6000.	1.1	8
43	Growth of ZnSe <i>_x</i> O _{1–<i>x</i>} Nanorods and Their Photoelectrochemical Properties. Energy & Fuels, 2021, 35, 6289-6297.	2.5	2
44	Quaternary Cu ₂ FeSnS ₄ /PVP/rGO Composite for Supercapacitor Applications. ACS Omega, 2021, 6, 9471-9481.	1.6	40
45	Cobalt-based derivatives oxygen evolution reaction. Applied Nanoscience (Switzerland), 2021, 11, 1367-1378.	1.6	6
46	TiO2 as a Photocatalyst for Water Splitting—An Experimental and Theoretical Review. Molecules, 2021, 26, 1687.	1.7	114
47	A Review on Cs-Based Pb-Free Double Halide Perovskites: From Theoretical and Experimental Studies to Doping and Applications. Molecules, 2021, 26, 2010.	1.7	23
48	Effect of cationic, anionic, and mixed surfactant role on manganese oxide nanoparticles for energy storage applications. Applied Nanoscience (Switzerland), 2021, 11, 1769-1775.	1.6	5
49	SnS2/TiO2 Nanocomposites for Hydrogen Production and Photodegradation under Extended Solar Irradiation. Catalysts, 2021, 11, 589.	1.6	24
50	Hydrothermal synthesis of Cu2Se–CoSe nanograin for electrochemical supercapacitor applications. Applied Nanoscience (Switzerland), 2021, 11, 1881-1888.	1.6	5
51	Cost Effective Solvothermal Method to Synthesize Zn-Doped TiO2 Nanomaterials for Photovoltaic and Photocatalytic Degradation Applications. Catalysts, 2021, 11, 690.	1.6	22
52	Bi2MoO6 hierarchical microflowers for electrochemical oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 18719-18728.	3.8	8
53	A strategy to enhance the photocatalytic efficiency of α-Fe2O3. Chemosphere, 2021, 270, 129498.	4.2	41
54	Rare earth metal (Sm) doped zinc ferrite (ZnFe2O4) for improved photocatalytic elimination of toxic dye from aquatic system. Environmental Research, 2021, 197, 111047.	3.7	49

#	Article	IF	CITATIONS
55	NiMoO4 nanorods photocatalytic activity comparison under UV and visible light. Environmental Research, 2021, 197, 111073.	3.7	9
56	Investigation on (Zn) doping and anionic surfactant (SDS) effect on SnO2 nanostructures for enhanced photocatalytic RhB dye degradation. Environmental Research, 2021, 199, 111312.	3.7	22
57	Anionic surfactant assisted copper hydroxide for toxic dye removal from wastewater. Environmental Research, 2021, 199, 111310.	3.7	4
58	PVP influence on Mn–CdS for efficient photocatalytic activity. Chemosphere, 2021, 277, 130346.	4.2	7
59	Influence of tin (Sn) doping on Co3O4 for enhanced photocatalytic dye degradation. Chemosphere, 2021, 277, 130325.	4.2	51
60	Energy flux density for higher-order cylindrical vector vortex beam tightly focused through a dielectric interface. Journal of Optics (India), 2021, 50, 548-558.	0.8	4
61	Pure and Ce-doped spinel CuFe2O4 photocatalysts for efficient rhodamine B degradation. Environmental Research, 2021, 200, 111528.	3.7	29
62	Synthesis of a carboxylic acid-based ruthenium sensitizer and its applicability towards Dye-Sensitized Solar Cells. Solar Energy, 2021, 225, 399-406.	2.9	10
63	Annealing temperature effect on cobalt ferrite nanoparticles for photocatalytic degradation. Chemosphere, 2021, 281, 130903.	4.2	54
64	Investigation of electrochemical performance of an efficient Ti2O3–CeO2 nanocomposite for enhanced pollution-free energy conversion applications. Journal of Environmental Management, 2021, 295, 113138.	3.8	3
65	Cleaner production of tamarind fruit shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications. Chemosphere, 2021, 282, 131033.	4.2	36
66	Effect of Nd3+ doping on CdO nanoparticles for supercapacitor applications. Ceramics International, 2021, 47, 30790-30796.	2.3	17
67	Ni/N co-doped P25 TiO2 photoelectrodes for efficient Dye-Sensitized Solar Cells. Materials Science in Semiconductor Processing, 2021, 135, 106062.	1.9	12
68	Direct growth of multilayered graphene nanofibers by chemical vapour deposition and their binder-free electrodes for symmetric supercapacitor devices. Progress in Organic Coatings, 2021, 161, 106511.	1.9	3
69	Asymmetric polyhedron structured NiSe ₂ @MoSe ₂ device for use as a supercapacitor. Nanoscale Advances, 2021, 3, 4207-4215.	2.2	24
70	Lithium doped poly(3-hexylthiophene) for efficient hole transporter and sensitizer in metal free quaterthiophene dye treated hybrid solar cells. Scientific Reports, 2021, 11, 20157.	1.6	4
71	Nickel iron oxide electrocatalysts for electrochemical OER activity. Applied Nanoscience (Switzerland), 2021, 11, 2669-2677.	1.6	2
72	Performance assessment of a 20 MW photovoltaic power plant in a hot climate using real data and simulation tools. Energy Reports, 2021, 7, 7297-7314.	2.5	21

#	Article	IF	CITATIONS
73	Investigation of pure and g-C3N4 loaded CdWO4 photocatalytic activity on reducing toxic pollutants. Chemosphere, 2021, , 133090.	4.2	10
74	Facile synthesis of a heterostructured lanthanum-doped SnO ₂ anchored with rGO for asymmetric supercapacitors and photocatalytic dye degradation. New Journal of Chemistry, 2021, 45, 22497-22513.	1.4	9
75	Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production. Energies, 2021, 14, 8265.	1.6	4
76	Electrochemical Oxygen Evolution Reaction Activity of Tin Sulfide Nanostructures. ChemistrySelect, 2020, 5, 11703-11707.	0.7	0
77	Electrochemical water splitting exploration of MnCo ₂ O ₄ , NiCo ₂ O ₄ cobaltites. New Journal of Chemistry, 2020, 44, 17679-17692.	1.4	12
78	Structural and photoelectrochemical characterization of heterostructured carbon sheet/Ag2MoO4-SnS/Pt photocapacitor. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112784.	2.0	12
79	Synthesis of highly active biocompatible ZrO2 nanorods using a bioextract. Ceramics International, 2020, 46, 25915-25920.	2.3	74
80	Marigold flower like structured Cu2NiSnS4 electrode for high energy asymmetric solid state supercapacitors. Scientific Reports, 2020, 10, 19198.	1.6	61
81	Investigation on copper based oxide, sulfide and selenide derivatives oxygen evolution reaction activity. Applied Nanoscience (Switzerland), 2020, 10, 4299-4306.	1.6	8
82	Energy storage performance of CoNiSe2 nanostructures. Materials Letters, 2020, 279, 128485.	1.3	2
83	Performance of TiO2 nanoparticles synthesized by microwave and solvothermal methods as photoanode in dye-sensitized solar cells (DSSC). International Journal of Hydrogen Energy, 2020, 45, 27036-27046.	3.8	38
84	Generation of ultra-long multiple optical tubes using annular Walsh function filters. Optical and Quantum Electronics, 2020, 52, 1.	1.5	6
85	Silver-doped cadmium sulfide for electrochemical water oxidation. Applied Nanoscience (Switzerland), 2020, 10, 4351-4358.	1.6	7
86	Cu2S electrochemical energy storage applications. AlP Conference Proceedings, 2020, , .	0.3	2
87	Cerium doped NiO nanoparticles by hydrothermal method. AIP Conference Proceedings, 2020, , .	0.3	1
88	Ni doped Bi2WO6 for electrochemical OER activity. International Journal of Hydrogen Energy, 2020, 45, 18859-18866.	3.8	27
89	CoNiSe ₂ Nanostructures for Clean Energy Production. ACS Omega, 2020, 5, 14702-14710.	1.6	27
90	Single walled carbon nanotube incorporated Titanium dioxide and Poly(3-hexylthiophene) as electron and hole transport materials for perovskite solar cells. Materials Letters, 2020, 276, 128174.	1.3	8

#	Article	IF	CITATIONS
91	Ruthenium (Ru) Doped Titanium Dioxide (P25) Electrode for Dye Sensitized Solar Cells. Energies, 2020, 13, 1532.	1.6	20
92	Neutral and alkaline chemical environment dependent synthesis of Mn3O4 for oxygen evolution reaction (OER). Materials Chemistry and Physics, 2020, 247, 122864.	2.0	16
93	Hydrothermal Method–Derived MnMoO ₄ Crystals: Effect of Cationic Surfactant on Microstructures and Electrochemical Properties. ChemistrySelect, 2020, 5, 7728-7733.	0.7	7
94	Urchin like NiCo2O4/rGO nanocomposite for high energy asymmetric storage applications. Ceramics International, 2020, 46, 16291-16297.	2.3	40
95	Perovskite Solar Cells: A Porous Graphitic Carbon based Hole Transporter/Counter Electrode Material Extracted from an Invasive Plant Species Eichhornia Crassipes. Scientific Reports, 2020, 10, 6835.	1.6	38
96	Interfacing green synthesized flake like-ZnO with TiO ₂ for bilayer electron extraction in perovskite solar cells. New Journal of Chemistry, 2020, 44, 8422-8433.	1.4	22
97	Transformation of TiO2 nanoparticles to nanotubes by simple solvothermal route and its performance as dye-sensitized solar cell (DSSC) photoanode. International Journal of Hydrogen Energy, 2020, 45, 15441-15452.	3.8	41
98	A multifunctional ruthenium based dye for hybrid nanocrystalline titanium dioxide/poly(3-hexylthiophene) solar cells. Materials Letters, 2020, 274, 127997.	1.3	10
99	Electrochemical water splitting of Ag-WO3 nanostructures. AIP Conference Proceedings, 2020, , .	0.3	1
100	Powder Pressed Cuprous Iodide (CuI) as A Hole Transporting Material for Perovskite Solar Cells. Materials, 2019, 12, 2037.	1.3	35
101	First-Principle Calculation of High Absorption-TlGaTe2 for Photovoltaic Application. Materials, 2019, 12, 2667.	1.3	1
102	Effect of doped TiO2 film as electron transport layer for inverted organic solar cell. Materials Science for Energy Technologies, 2019, 2, 385-388.	1.0	11
103	Investigations on the photo catalytic activity of calcium doped TiO2 photo electrode for enhanced efficiency of anthocyanins based dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 43-57.	2.0	21
104	Polymer/Fullerene Blend Solar Cells with Cadmium Sulfide Thin Film as an Alternative Hole-Blocking Layer. Polymers, 2019, 11, 460.	2.0	2
105	A Quarterthiophene-Based Dye as an Efficient Interface Modifier for Hybrid Titanium Dioxide/Poly(3-hexylthiophene)(P3HT) Solar Cells. Polymers, 2019, 11, 1752.	2.0	9
106	CoS2/TiO2 Nanocomposites for Hydrogen Production under UV Irradiation. Materials, 2019, 12, 3882.	1.3	21
107	Microwave-assisted solvothermal synthesis of worms-like TiO2 nanostructures in submicron regime as light scattering layers for dye-sensitized solar cells. Materials Letters, 2019, 236, 747-751.	1.3	17
108	A first-principle study of the electronic, mechanical and optical properties of inorganic perovskite Cs2Snl6 for intermediate-band solar cells. Materials Letters, 2018, 218, 233-236.	1.3	61

#	Article	IF	CITATIONS
109	Nickel sulphide-carbon composite hole transporting material for (CH3NH3PbI3) planar heterojunction perovskite solar cell. Materials Letters, 2018, 221, 283-288.	1.3	26
110	Algal buffer layers for enhancing the efficiency of anthocyanins extracted from rose petals for natural dye-sensitized solar cell (DSSC). International Journal of Energy Research, 2018, 42, 790-801.	2.2	24
111	Size controlled synthesis of TiO 2 nanoparticles by modified solvothermal method towards effective photo catalytic and photovoltaic applications. Materials Research Bulletin, 2018, 97, 351-360.	2.7	111
112	Hybrid Density Functional Study of Au2Cs2I6, Ag2GeBaS4, Ag2ZnSnS4, and AgCuPO4 for the Intermediate Band Solar Cells. Energies, 2018, 11, 3457.	1.6	5
113	Properties of Novel Non-Silicon Materials for Photovoltaic Applications: A First-Principle Insight. Materials, 2018, 11, 2006.	1.3	11
114	A promising high-efficiency photovoltaic alternative non-silicon material: A first-principle investigation. Scripta Materialia, 2018, 156, 134-137.	2.6	2
115	The Performance of CH3NH3PbI3 - Nanoparticles based – Perovskite Solar Cells Fabricated by Facile Powder press Technique. Materials Research Bulletin, 2018, 108, 61-72.	2.7	17
116	Enhancement in the photostability of natural dyes for dye-sensitized solar cell (DSSC) applications: a review. International Journal of Energy Research, 2017, 41, 1372-1396.	2.2	83
117	Computational Modeling of Novel Bulk Materials for the Intermediate-Band Solar Cells. ACS Omega, 2017, 2, 1454-1462.	1.6	26
118	Annealing Induced Shape Transformation of CZTS Nanorods Based Thin Films. Langmuir, 2017, 33, 6151-6158.	1.6	13
119	Effect of solvents in the extraction and stability of anthocyanin from the petals of Caesalpinia pulcherrima for natural dye sensitized solar cell applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 9882-9892.	1.1	21
120	Enhanced Performance of Nanoporous Titanium Dioxide Solar Cells Using Cadmium Sulfide and Poly(3-hexylthiophene) Co-Sensitizers. Polymers, 2017, 9, 467.	2.0	9
121	Sea grass like arranged TiO2 nanorods sensitized by natural dyes for solar cell applications. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	2
122	Enhanced performance of natural dye sensitised solar cells fabricated using rutile TIO2 nanorods. Optical Materials, 2016, 58, 76-83.	1.7	25
123	The performance of CdS quantum dotÂsensitized ZnO nanorod-based solar cell. Journal of Sol-Gel Science and Technology, 2016, 80, 867-872.	1.1	6
124	Synthesis and characterization of zeolite NaA and NaY coating on mild steel. Journal of Sol-Gel Science and Technology, 2016, 79, 510-519.	1.1	7
125	Structural, optical and magnetic properties of undoped NiO and Fe-doped NiO nanoparticles synthesized by wet-chemical process. Materials Characterization, 2016, 114, 166-171.	1.9	69
126	Natural dye sensitized TiO 2 nanorods assembly of broccoli shape based solar cells. Journal of Photochemistry and Photobiology B: Biology, 2015, 148, 223-231.	1.7	28

DHAYALAN VELAUTHAPILLAI

#	Article	IF	CITATIONS
127	Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells. Applied Nanoscience (Switzerland), 2015, 5, 297-303.	1.6	15
128	Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells. Applied Nanoscience (Switzerland), 2015, 5, 297-303.	1.6	1
129	Solanum nigrum and Eclipta alba leaf pigments for dye sensitized solar cell applications. Journal of Sol-Gel Science and Technology, 2014, 69, 17-20.	1.1	6
130	Studies on bundle like ZnO nanorods for solar cell applications. Solar Energy, 2014, 106, 129-135.	2.9	35
131	Rosa centifolia sensitized ZnO nanorods for photoelectrochemical solar cell applications. Solar Energy, 2014, 106, 143-150.	2.9	16
132	Nanocrystalline Ga-doped ZnO thin films for inverted polymer solar cells. Solar Energy, 2014, 106, 95-101.	2.9	25
133	Grape pigment (malvidin-3-fructoside) as natural sensitizer for dye-sensitized solar cells. Materials for Renewable and Sustainable Energy, 2014, 3, 1.	1.5	10
134	Enhanced photovoltaic performance of quantum dot sensitized solar cells with Ag-doped TiO2 nanocrystalline thin films. Journal of Materials Science: Materials in Electronics, 2014, 25, 2724-2729.	1.1	11
135	Utilization of natural anthocyanin pigments as photosensitizers for dye-sensitized solar cells. Journal of Sol-Gel Science and Technology, 2013, 66, 212-219.	1.1	78
136	Synthesis and characterization of flower like ZnO nanorods for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2013, 24, 2367-2371.	1.1	17
137	Focusing properties of aberration-free electromagnetic waves in thin dielectric slabs. Journal of Modern Optics, 2013, 60, 240-247.	0.6	0
138	Structural, Optical, and Electrical Properties of Cobalt-Doped CdS Quantum Dots. Journal of Electronic Materials, 2012, 41, 665-672.	1.0	29
139	Impedance spectroscopy and dielectric properties of cobalt doped CdS nanoparticles. Powder Technology, 2012, 217, 1-6.	2.1	24
140	Effect of Cr-doping on the structural and optical properties of CdS nanoparticles prepared by chemical precipitation method. Journal of Materials Science: Materials in Electronics, 2012, 23, 618-624.	1.1	16
141	Dye-sensitized ZnO nanorod based photoelectrochemical solar cells with natural dyes extracted from Ixora coccinea, Mulberry and Beetroot. Journal of Materials Science: Materials in Electronics, 2011, 22, 1662-1666.	1.1	34
142	A mathematical model to predict the grain size of nanocrystalline CdS thin films based on the deposition condition used in the sol–gel spin coating method. Applied Physics A: Materials Science and Processing, 2011, 104, 1129-1136.	1.1	6
143	Natural dye (cyanidin 3-O-glucoside) sensitized nanocrystalline TiO2 solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte. Renewable Energy, 2011, 36, 2484-2488.	4.3	74
144	Nanocrystalline CdS thin films prepared by sol-gel spin coating. International Journal of Materials Research, 2011, 102, 584-586.	0.1	3

#	Article	IF	CITATIONS
145	Focal shifts on focusing through a plane interface. Optics Communications, 2009, 282, 2286-2291.	1.0	7
146	Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 691.	0.8	15
147	A Model for Greener Power Generation for NE Sri Lanka. , 2008, , .		Ο
148	Mapping and Scientometric Measures on Research Publications of Energy Storage and Conversion. Topics in Catalysis, 0, , 1.	1.3	0