Qinghua Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4388870/qinghua-zhang-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

9,156 183 43 92 h-index g-index citations papers 6.68 7.8 10,924 201 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
183	Unique thermal and combustion behaviors of composite propellants containing a high-energy insensitive nitropyrimidine derivative. <i>Combustion and Flame</i> , 2022 , 237, 111855	5.3	1
182	Simple reaction to prepare a heat-resistant and insensitive explosive (2-nitro-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diamine) and its derivatives. <i>Chemical Engineering Journal</i> , 2022 , 432, 134297	14.7	2
181	Hydrogen bonding distribution and its effect on sensitivity of planar tricyclic polyazole energetic materials. <i>Chemical Engineering Journal</i> , 2022 , 433, 134479	14.7	1
180	From the sensitive primary explosive ICM-103 to insensitive heat-resistant energetic materials through a local azide-to-amino structural modification strategy. <i>Chemical Engineering Journal</i> , 2022 , 429, 132172	14.7	6
179	Novel thermo-alkali-stable cellulase-producing Serratia sp. AXJ-M cooperates with Arthrobacter sp. AXJ-M1 to improve degradation of cellulose in papermaking black liquor. <i>Journal of Hazardous Materials</i> , 2022 , 421, 126811	12.8	2
178	Molecular and crystal insights into the structural design of low-sensitivity energetic materials. <i>Theoretical and Computational Chemistry</i> , 2022 , 435-458		
177	Machine Learning-Assisted High-Throughput Virtual Screening for On-Demand Customization of Advanced Energetic Materials. <i>Engineering</i> , 2022 ,	9.7	1
176	A heat-resistant and insensitive energetic material based on the pyrazolo-triazine framework. <i>Energetic Materials Frontiers</i> , 2022 , 3, 26-31	3.3	1
175	Synthesis of Ideal Energetic Materials with High Density and Performance Based on 5-Aminotetrazole. <i>Crystal Growth and Design</i> , 2022 , 22, 2594-2601	3.5	3
174	Self-assembly of iodine-containing oxidants with nitrogen-rich heterocyclic compounds for novel energetic biocidal agents. <i>Chemical Engineering Journal</i> , 2022 , 442, 136326	14.7	1
173	Recent advances in the treatment of lignin in papermaking wastewater World Journal of Microbiology and Biotechnology, 2022 , 38, 116	4.4	1
172	Effects of revegetation on the composition and diversity of bacterial and fungal communities of sandification land soil, in Southern China. <i>Environmental Monitoring and Assessment</i> , 2021 , 193, 706	3.1	О
171	Hunting for Energetic Complexes as Hypergolic Promoters for Green Propellants Using Hydrogen Peroxide as Oxidizer. <i>Inorganic Chemistry</i> , 2021 , 60, 17033-17039	5.1	2
170	Structural Analysis and Controllable Fabrication of Two Pentazolate-Based 3D Topological Networks. <i>Inorganic Chemistry</i> , 2021 , 60, 8409-8413	5.1	2
169	Enhancement of Butanol Production in a Newly Selected Strain through Accelerating Phase Shift by Different Phases C/N Ratio Regulation from Puerariae Slag Hydrolysate. <i>Biotechnology and Bioprocess Engineering</i> , 2021 , 26, 256-264	3.1	
168	Detoxification of azo dye Direct Black G by thermophilic Anoxybacillus sp. PDR2 and its application potential in bioremediation. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 214, 112084	7	12
167	Regulating safety and energy release of energetic materials by manipulation of molybdenum disulfide phase. <i>Chemical Engineering Journal</i> , 2021 , 411, 128603	14.7	5

(2020-2021)

166	Self-Assembly of Nitrogen-Rich Heterocyclic Compounds with Oxidants for the Development of High-Energy Materials. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 28390-28397	9.5	6
165	Dye-assembled two-dimensional porous HMX for enhanced energy release and safety performance. <i>Energetic Materials Frontiers</i> , 2021 , 2, 139-146	3.3	4
164	A facile strategy for synthesizing promising pyrazole-fused energetic compounds. <i>Chemical Engineering Journal</i> , 2021 , 416, 129190	14.7	12
163	Evaluation of bioremediation and detoxification potentiality for papermaking black liquor by a new isolated thermophilic and alkali-tolerant Serratia sp. AXJ-M. <i>Journal of Hazardous Materials</i> , 2021 , 406, 124285	12.8	6
162	Construction of Bicyclic 1,2,3-Triazine -Oxides from Aminocyanides. <i>Organic Letters</i> , 2021 , 23, 734-738	6.2	9
161	Cellulolytic bacterium characterization and genome functional analysis: An attempt to lay the foundation for waste management. <i>Bioresource Technology</i> , 2021 , 321, 124462	11	4
160	New Insight into the Aromaticity of cyclo-N5[by Constructing 3D Arrays in Crystal Structures. <i>Crystal Growth and Design</i> , 2021 , 21, 33-39	3.5	5
159	Predictive Modelling of Sugar Release from Blended Garden Wastes in a Microwave-Assisted Hot Water Process. <i>Waste and Biomass Valorization</i> , 2021 , 12, 3009-3018	3.2	1
158	Energetic isomers of bridged oxadiazole nitramines: the effect of asymmetric heterocyclics on stability and energetic properties. <i>Dalton Transactions</i> , 2021 , 50, 13286-13293	4.3	8
157	Recent advances in synthesis and crystal structures of metal pentazolate salts. <i>CrystEngComm</i> , 2021 , 23, 5551-5559	3.3	1
156	Synthesis of nitrogen-rich and thermostable energetic materials based on hetarenecarboxylic acids. <i>Dalton Transactions</i> , 2021 , 50, 14462-14468	4.3	3
155	Cationic effect on properties related to thermal stability and ignition delay for hypergolic ionic liquids. <i>Journal of Molecular Liquids</i> , 2021 , 336, 116572	6	1
154	[1,2,4]Triazolo[4,3-b]pyridazine as a building block towards low-sensitivity high-energy materials. <i>Chemical Engineering Journal</i> , 2021 , 421, 129635	14.7	9
153	From heart drug to propellant fuels: Designing nitroglycerin-ionic liquid composite as green high-energy hypergolic fluids. <i>Combustion and Flame</i> , 2021 , 233, 111597	5.3	O
152	Effect of bioaugmentation on lignocellulose degradation and antibiotic resistance genes removal during biogas residues composting. <i>Bioresource Technology</i> , 2021 , 340, 125742	11	7
151	Multi-parallel microfluidic recrystallization and characterization of explosives. <i>Energetic Materials Frontiers</i> , 2021 , 2, 278-286	3.3	2
150	A promising hydrogen peroxide adduct of ammonium cyclopentazolate as a green propellant component. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 12334-12338	13	22
149	Construction of an Unusual Two-Dimensional Layered Structure for Fused-Ring Energetic Materials with High Energy and Good Stability. <i>Engineering</i> , 2020 , 6, 1006-1012	9.7	19

148	Theoretical Study on Hydrolytic Stability of Borohydride-Rich Hypergolic Ionic Liquids. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 2942-2950	2.8	4
147	IIIandem-actionIferrocenyl iodocuprates promoting low temperature hypergolic ignitions of IgreenIEIL⊞2O2 bipropellants. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14661-14670	13	10
146	Synthesis of fused tetrazolo[1,5-b]pyridazine-based energetic compounds. <i>Energetic Materials Frontiers</i> , 2020 , 1, 16-25	3.3	10
145	Fused heterocycle-based energetic materials (2012\(\textbf{Q} 019 \)). <i>Journal of Materials Chemistry A</i> , 2020 , 8, 4193-4216	13	100
144	Template-Free Fabrication of Refractive Index Tunable Polysiloxane Coating Using Homogeneous Embedding Strategy: Application in High-Power Laser System. <i>Nanomaterials</i> , 2020 , 10,	5.4	3
143	Decoding the crystal engineering of graphite-like energetic materials: from theoretical prediction to experimental verification. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5975-5985	13	13
142	Interfacial engineering endowing energetic co-particles with high density and reduced sensitivity. <i>Chemical Engineering Journal</i> , 2020 , 387, 124209	14.7	13
141	Synthesis and Properties of 3,6-Dinitropyrazolo[4,3-c]-pyrazole (DNPP) Derivatives. <i>Propellants, Explosives, Pyrotechnics</i> , 2020 , 45, 546-553	1.7	8
140	Integrated metagenomic and metaproteomic analyses reveal potential degradation mechanism of azo dye-Direct Black G by thermophilic microflora. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 196, 110557	7	11
139	Melamine N-oxide based self-assembled energetic materials with balanced energy & sensitivity and enhanced combustion behavior. <i>Chemical Engineering Journal</i> , 2020 , 395, 125114	14.7	20
138	Effects of alkyl chains on the physicochemical properties of nitroguanidine derivatives. <i>Energetic Materials Frontiers</i> , 2020 , 1, 157-164	3.3	4
137	A sustainable system for maleic acid synthesis from biomass-derived sugar. <i>Journal of Chemical Technology and Biotechnology</i> , 2020 , 95, 751-757	3.5	6
136	5,6-Fused bicyclic tetrazolo-pyridazine energetic materials. <i>Chemical Communications</i> , 2020 , 56, 1493-14	1 9 68	34
135	Insight into the Characteristics and New Mechanism of Nicosulfuron Biodegradation by a sp. LAM1902. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 826-837	5.7	12
134	A pentazolate-based bowl-shaped molecular container. <i>Dalton Transactions</i> , 2020 , 49, 17542-17546	4.3	3
133	Depolymerization of holocellulose from Chinese herb residues by the mixture of lignin-derived deep eutectic solvent with water. <i>Carbohydrate Polymers</i> , 2020 , 248, 116793	10.3	4
132	Genome and transcriptome analysis of a newly isolated azo dye degrading thermophilic strain Anoxybacillus sp. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 203, 111047	7	15
131	Acetone, butanol, and ethanol production from puerariae slag hydrolysate through ultrasound-assisted dilute acid by Clostridium beijerinckii YBS3. <i>Bioresource Technology</i> , 2020 , 316, 123	899	3

(2019-2020)

130	Anaerobic Co-digestion of Rice Straw and Pig Manure Pretreated With a Cellulolytic Microflora: Methane Yield Evaluation and Kinetics Analysis. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 579405	5.8	7	
129	Energetic Metal-Organic Frameworks Incorporating NHOH for New High-Energy-Density Materials. <i>Inorganic Chemistry</i> , 2019 , 58, 12228-12233	5.1	11	
128	Exploring the reactive chemistry of FOX-7: synthesis of cyclic triazinane-based energetic materials featuring the FOX-7 backbone. <i>New Journal of Chemistry</i> , 2019 , 43, 10429-10433	3.6	2	
127	Fabrication of protonated g-CN nanosheets as promising proton conductive materials. <i>Chemical Communications</i> , 2019 , 55, 7414-7417	5.8	7	
126	A green metal-free fused-ring initiating substance. <i>Nature Communications</i> , 2019 , 10, 1339	17.4	68	
125	Synthesis and hypergolic properties of flammable ionic liquids based on the cyano (1H-1,2,3-triazole-1-yl) dihydroborate anion. <i>Dalton Transactions</i> , 2019 , 48, 6198-6204	4.3	10	
124	Revisiting the reactive chemistry of FOX-7: cyclization of FOX-7 affords the fused-ring polynitro compounds. <i>Chemical Communications</i> , 2019 , 55, 3497-3500	5.8	18	
123	[LiNa(N5)2(H2O)4][H2O: a novel heterometallic cyclo-(rm{N}_5^-) framework with helical chains. <i>Science China Materials</i> , 2019 , 62, 283-288	7.1	17	
122	Cellulolytic Microflora Pretreatment Increases the Efficiency of Anaerobic Co-digestion of Rice Straw and Pig Manure. <i>Bioenergy Research</i> , 2019 , 12, 703-713	3.1	5	
121	From energetic cobalt pentazolate to cobalt@nitrogen-doped carbons as efficient electrocatalysts for oxygen reduction. <i>Science China Materials</i> , 2019 , 62, 1403-1411	7.1	6	
120	Hunting for advanced high-energy-density materials with well-balanced energy and safety through an energetic host guest inclusion strategy. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19248-19257	13	40	
119	Exploration of the key functional strains from an azo dye degradation microbial community by DGGE and high-throughput sequencing technology. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 24658-24671	5.1	11	
118	High density assembly of energetic molecules under the constraint of defected 2D materials. Journal of Materials Chemistry A, 2019 , 7, 17806-17814	13	29	
117	Synthesis of Thermally Stable and Insensitive Energetic Materials by Incorporating the Tetrazole Functionality into a Fused-Ring 3,6-Dinitropyrazolo-[4,3-]Pyrazole Framework. <i>ACS Applied Materials & Discounty ACS Applied</i>	9.5	27	
116	Dressing technology of arc diamond wheel by roll abrading in aspheric parallel grinding. <i>International Journal of Advanced Manufacturing Technology</i> , 2019 , 105, 2699-2706	3.2	1	
115	sp. nov., isolated from a sulfonylurea herbicide-degrading consortium enriched with saline soil. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2019 , 69, 3910-3916	2.2	1	
114	Combination of gem-dinitromethyl functionality and a 5-amino-1,3,4-oxadiazole framework for zwitterionic energetic materials. <i>Chemical Communications</i> , 2019 , 56, 209-212	5.8	21	
113	Effects of Nanosized Metals and Metal Oxides on the Thermal Behaviors of Insensitive High Energetic Compound ICM-102. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 31108-31118	3.8	6	

112	Silica-Based Sol-Gel Coating with High Transmission at 1053 and 527 nm and Absorption at 351 nm for Frequency-Converting Crystals in High-Power Laser System. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 5038	2.6	2
111	Construction of a Thermally Stable and Highly Energetic Metal©rganic Framework as Lead-Free Primary Explosives. <i>Crystal Growth and Design</i> , 2018 , 18, 1896-1902	3.5	33
110	Stabilization of the Pentazolate Anion in a Zeolitic Architecture with Na20N60 and Na24N60 Nanocages. <i>Angewandte Chemie</i> , 2018 , 130, 2622-2625	3.6	13
109	Stabilization of the Pentazolate Anion in a Zeolitic Architecture with Na N and Na N Nanocages. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2592-2595	16.4	74
108	Synthesis of 4,8-Dinitraminodifurazano[3, 4-b,e]pyrazine Derived Nitrogen-Rich Salts as Potential Energetic Materials. <i>ChemistrySelect</i> , 2018 , 3, 849-854	1.8	19
107	Synthesis and Properties of Triaminocyclopropenium Cation Based Ionic Liquids as Hypergolic Fluids. <i>Chemistry - A European Journal</i> , 2018 , 24, 4620-4627	4.8	13
106	The ignition process measurements and performance evaluations for hypergolic ionic liquid fuels: [EMIm][DCA] and [BMIm][DCA]. <i>Fuel</i> , 2018 , 215, 612-618	7.1	20
105	Experimental Observation of Hypergolic Ignition of Superbase-Derived Ionic Liquids. <i>Journal of Propulsion and Power</i> , 2018 , 34, 125-132	1.8	9
104	A simple and versatile strategy for taming FOX-7. Chemical Communications, 2018, 54, 9333-9336	5.8	25
103	Ionothermal Synthesis of Open-Framework Metal Phosphates Using a Multifunctional Ionic Liquid. <i>Inorganic Chemistry</i> , 2018 , 57, 8726-8729	5.1	22
102	Designing Explosive Poly(Ionic Liquid)s as Novel Energetic Polymers. <i>Chemistry - A European Journal</i> , 2018 , 24, 15897-15902	4.8	9
101	Rational Design and Facile Synthesis of Boranophosphate Ionic Liquids as Hypergolic Rocket Fuels. <i>Chemistry - A European Journal</i> , 2018 , 24, 10201	4.8	14
100	Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. <i>Nature Communications</i> , 2018 , 9, 2444	17.4	159
99	Exploration of new water stable proton-conducting materials in an amino acid-templated metal phosphate system. <i>Dalton Transactions</i> , 2018 , 47, 654-658	4.3	24
98	Biodegradation and detoxification of Direct Black G textile dye by a newly isolated thermophilic microflora. <i>Bioresource Technology</i> , 2018 , 250, 650-657	11	70
97	Effect of organic loading rate on anaerobic co-digestion of rice straw and pig manure with or without biological pretreatment. <i>Bioresource Technology</i> , 2018 , 250, 155-162	11	54
96	Iodocuprate-containing ionic liquids as promoters for green propulsion. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22819-22829	13	19
95	Water stable oxalate-based coordination polymers with in situ generated cyclic dipeptides showing high proton conductivity. <i>Dalton Transactions</i> , 2018 , 47, 15288-15292	4.3	6

94	Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system. <i>Journal of Sol-Gel Science and Technology</i> , 2018 , 88, 249-254	2.3	17
93	Coulomb explosion and ultra-fast hypergolic ignition of borohydride-rich ionic liquids with WFNA. <i>Combustion and Flame</i> , 2018 , 194, 464-471	5.3	18
92	Heterometallic Hybrid Open Frameworks: Synthesis and Application for Selective Detection of Nitro Explosives. <i>Crystal Growth and Design</i> , 2017 , 17, 1836-1842	3.5	20
91	Organic superbase derived ionic liquids based on the TFSI anion: synthesis, characterization, and electrochemical properties. <i>New Journal of Chemistry</i> , 2017 , 41, 5091-5097	3.6	10
90	In Situ Encapsulation of Imidazolium Proton Carriers in Anionic Open Frameworks Leads the Way to Proton-Conducting Materials. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 2295-2300	2.3	9
89	Construction of hydrothermally stable beryllium phosphite open-frameworks with high proton conductivity. <i>CrystEngComm</i> , 2017 , 19, 3997-4002	3.3	12
88	Synthesis of gem-Dinitromethylated and Fluorodinitromethylated Derivatives of 5,5'-Dinitro-bis-1,2,4-triazole as Promising High-Energy-Density Materials. <i>Chemistry - A European Journal</i> , 2017 , 23, 12787-12794	4.8	24
87	Nitrato-Functionalized Task-Specific Ionic Liquids as Attractive Hypergolic Rocket Fuels. <i>Chemistry - A European Journal</i> , 2017 , 23, 12502-12509	4.8	18
86	A luminescent heterometallic metal-organic framework for the naked-eye discrimination of nitroaromatic explosives. <i>Chemical Communications</i> , 2017 , 53, 10318-10321	5.8	63
85	Synthesis of 1-(2H-tetrazol-5-yl)-5-nitraminotetrazole and its derivatives from 5-aminotetrazole and cyanogen azide: a promising strategy towards the development of CN linked bistetrazolate energetic materials. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 20867-20873	13	36
84	Exploiting the energetic potential of 1,2,4-oxadiazole derivatives: combining the benefits of a 1,2,4-oxadiazole framework with various energetic functionalities. <i>Dalton Transactions</i> , 2017 , 46, 14210	-44218	8 ³⁰
83	A promising high-energy-density material. <i>Nature Communications</i> , 2017 , 8, 181	17.4	141
82	Green primary energetic materials based on N-(3-nitro-1-(trinitromethyl)-1H-1,2,4-triazol-5-yl)nitramide. <i>New Journal of Chemistry</i> , 2017 , 41, 9070-90	o 3 6	22
81	Adaptive laser conditioning of reflective thin film based on photo thermal lens probe. <i>Review of Scientific Instruments</i> , 2017 , 88, 124901	1.7	2
80	Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials. <i>Angewandte Chemie</i> , 2016 , 128, 11720-11723	3.6	18
79	Enhanced butanol production by solvent tolerance Clostridium acetobutylicum SE25 from cassava flour in a fibrous bed bioreactor. <i>Bioresource Technology</i> , 2016 , 221, 412-418	11	16
78	Supramolecular Templating Approach for the Solvent-Free Synthesis of Open-Framework Metal Oxalates. <i>Inorganic Chemistry</i> , 2016 , 55, 7817-9	5.1	30
77	Beyond solvents and electrolytes: Ionic liquids-based advanced functional materials. <i>Progress in Materials Science</i> , 2016 , 77, 80-124	42.2	109

76	Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels. <i>Chemical Communications</i> , 2016 , 52, 2031-4	5.8	56
75	Synthesis of efficient SBA-15 immobilized ionic liquid catalyst and its performance for Friedel © rafts reaction. <i>Catalysis Today</i> , 2016 , 276, 112-120	5.3	11
74	Selective detection of picric acid by a fluorescent ionic liquid chemosensor. <i>Sensors and Actuators B: Chemical</i> , 2016 , 229, 520-527	8.5	44
73	Dancing with Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies for N-Heterocyclic Frameworks in High Energy Density Materials. <i>Accounts of Chemical Research</i> , 2016 , 49, 4-16	24.3	184
72	Exploration of the key functional proteins from an efficient cellulolytic microbial consortium using dilution-to-extinction approach. <i>Journal of Environmental Sciences</i> , 2016 , 43, 199-207	6.4	5
71	Enhancement of butanol production in Clostridium acetobutylicum SE25 through accelerating phase shift by different phases pH regulation from cassava flour. <i>Bioresource Technology</i> , 2016 , 201, 148-55	11	11
70	Towards Safer Rocket Fuels: Hypergolic Imidazolylidene-Borane Compounds as Replacements for Hydrazine Derivatives. <i>Chemistry - A European Journal</i> , 2016 , 22, 10187-93	4.8	30
69	Microporous MetalDrganic Frameworks Based on Zinc Clusters and Their Fluorescence Enhancements towards Acetone and Chloroform. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 3411-3416	2.3	14
68	Bis(borano)hypophosphite-based ionic liquids as ultrafast-igniting hypergolic fuels. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8978-8982	13	41
67	Towards N-Alkylimidazole Borane-based Hypergolic Fuels. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 3528-	354353	14
67 66	Towards N-Alkylimidazole Borane-based Hypergolic Fuels. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 3528- Fluorescent heterometallic MOFs: tunable framework charges and application for explosives detection. <i>CrystEngComm</i> , 2016 , 18, 8301-8308	3 5 33	14
	Fluorescent heterometallic MOFs: tunable framework charges and application for explosives		
66	Fluorescent heterometallic MOFs: tunable framework charges and application for explosives detection. <i>CrystEngComm</i> , 2016 , 18, 8301-8308 Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and	3.3	16 54
66	Fluorescent heterometallic MOFs: tunable framework charges and application for explosives detection. <i>CrystEngComm</i> , 2016 , 18, 8301-8308 Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11548-51 Energetic salts with Estacking and hydrogen-bonding interactions lead the way to future energetic	3.3	16 54
666564	Fluorescent heterometallic MOFs: tunable framework charges and application for explosives detection. <i>CrystEngComm</i> , 2016 , 18, 8301-8308 Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11548-51 Energetic salts with Estacking and hydrogen-bonding interactions lead the way to future energetic materials. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1697-704 Biodegradable betaine-based aprotic task-specific ionic liquids and their application in efficient	3.3 16.4 16.4	16 54 263
66656463	Fluorescent heterometallic MOFs: tunable framework charges and application for explosives detection. <i>CrystEngComm</i> , 2016 , 18, 8301-8308 Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11548-51 Energetic salts with Btacking and hydrogen-bonding interactions lead the way to future energetic materials. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1697-704 Biodegradable betaine-based aprotic task-specific ionic liquids and their application in efficient SO2 absorption. <i>Green Chemistry</i> , 2015 , 17, 3798-3805 Super-base-derived hypergolic ionic fuels with remarkably improved thermal stability. <i>Journal of</i>	3.3 16.4 16.4	165426334
6665646362	Fluorescent heterometallic MOFs: tunable framework charges and application for explosives detection. <i>CrystEngComm</i> , 2016 , 18, 8301-8308 Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11548-51 Energetic salts with Btacking and hydrogen-bonding interactions lead the way to future energetic materials. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1697-704 Biodegradable betaine-based aprotic task-specific ionic liquids and their application in efficient SO2 absorption. <i>Green Chemistry</i> , 2015 , 17, 3798-3805 Super-base-derived hypergolic ionic fuels with remarkably improved thermal stability. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20664-20672 Exploring Sustainable Rocket Fuels: [Imidazolyl-Amine-BH2](+)-Cation-Based Ionic Liquids as	3.3 16.4 16.4 10	16542633431

(2013-2014)

58	Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts. <i>Applied Catalysis B: Environmental</i> , 2014 , 144, 739-749	21.8	75
57	Molecular design and property prediction of high density polynitro[3.3.3]-propellane-derivatized frameworks as potential high explosives. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 10857-65	2.8	24
56	Deep eutectic solvents as novel extraction media for phenolic compounds from model oil. <i>Chemical Communications</i> , 2014 , 50, 11749-52	5.8	107
55	Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. <i>Chemical Reviews</i> , 2014 , 114, 10527-74	68.1	378
54	Catalytic Reactions in or by Room-Temperature Ionic Liquids: Bridging the Gap between Homogeneous and Heterogeneous Catalysis 2014 , 21-84		
53	Metall-organische GerEtverbindungen als Explosivstoffe: ein neues Konzept filenergetische Materialien. <i>Angewandte Chemie</i> , 2014 , 126, 2574-2576	3.6	14
52	Insensitive nitrogen-rich materials incorporating the nitroguanidyl functionality. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 212-7	4.5	36
51	Metal-organic frameworks as high explosives: a new concept for energetic materials. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2540-2	16.4	168
50	Growing catenated nitrogen atom chains. Angewandte Chemie - International Edition, 2013, 52, 8792-4	16.4	66
49	Comparative assessment of the methanogenic steps of single and two-stage processes without or with a previous hydrolysis of cassava distillage. <i>Bioresource Technology</i> , 2013 , 147, 1-6	11	7
48	Mechanocatalytic deconstruction of cellulose: an emerging entry into biorefinery. <i>ChemSusChem</i> , 2013 , 6, 2042-4	8.3	64
47	Ionic liquid propellants: future fuels for space propulsion. Chemistry - A European Journal, 2013, 19, 154	4.6551	79
46	Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. <i>Green Chemistry</i> , 2013 , 15, 963	10	74
45	Exploration of the key microbes involved in the cellulolytic activity of a microbial consortium by serial dilution. <i>Bioresource Technology</i> , 2013 , 132, 395-400	11	12
44	Isolation of new flavan-3-ol and lignan glucoside from Loropetalum chinense and their antimicrobial activities. <i>Flaterap</i> [1 2013 , 90, 228-32	3.2	10
43	Activation of microcrystalline cellulose in a CO(2)-based switchable system. <i>ChemSusChem</i> , 2013 , 6, 593	-6 .3	53
42	N-Trinitroethylamino functionalization of nitroimidazoles: a new strategy for high performance energetic materials. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7500	13	69
41	Ionic Liquid-Mediated Fe2O3 Shape-Controlled Nanocrystal-Supported Noble Metals: Highly Active Materials for CO Oxidation. <i>ChemCatChem</i> , 2013 , 5, 1978-1988	5.2	13

40	Energetic N-trinitroethyl-substituted mono-, di-, and triaminotetrazoles. <i>Chemistry - A European Journal</i> , 2013 , 19, 11000-6	4.8	64
39	Wachsende Ketten aus catenierten Stickstoffatomen. <i>Angewandte Chemie</i> , 2013 , 125, 8954-8956	3.6	7
38	Green and inexpensive choline-derived solvents for cellulose decrystallization. <i>Chemistry - A European Journal</i> , 2012 , 18, 1043-6	4.8	92
37	Electrically Switchable Capillarity of Ionic Liquids. <i>Journal of Adhesion Science and Technology</i> , 2012 , 26, 2069-2078	2	6
36	Deep eutectic solvents: syntheses, properties and applications. <i>Chemical Society Reviews</i> , 2012 , 41, 710)8 5 % 65	2679
35	Investigation of cationEnion interaction in 1-(2-hydroxyethyl)-3-methylimidazolium-based ion pairs by density functional theory calculations and experiments. <i>Journal of Physical Organic Chemistry</i> , 2012 , 25, 248-257	2.1	56
34	Fluorescent quinolizinium ionic liquids (salts) with unexpectedly high quantum yields up to >99%. Journal of Materials Chemistry, 2011 , 21, 8979		27
33	Ionic liquid based variable focus lenses. <i>Soft Matter</i> , 2011 , 7, 5941	3.6	31
32	Solvent-dependent photoresponsive conductivity of azobenzene-appended ionic liquids. <i>Chemical Communications</i> , 2011 , 47, 6641-3	5.8	46
31	Ionic liquid-modified dyes and their sensing performance toward acids in aqueous and non-aqueous solutions. <i>Analyst, The</i> , 2011 , 136, 1302-4	5	26
30	Hydrophobic 1-allyl-3-alkylimidazolium dicyanamide ionic liquids with low densities. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6864		15
29	AC Electrochemical Stability of Ionic Liquids. <i>Chemistry Letters</i> , 2011 , 40, 1423-1425	1.7	3
28	Recent advances in ionic liquid catalysis. <i>Green Chemistry</i> , 2011 , 13, 2619	10	535
27	Carborane-Derivatized Low-Melting Salts with Ether-Functionalized Cations Preparation and Properties. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 1910-1920	2.3	8
26	Depolymerization of cellulose assisted by a nonthermal atmospheric plasma. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8964-7	16.4	76
25	Ionic liquidized-naphthalenesulfonamide: successful fabrication of liquid fluorescent materials. Journal of Materials Chemistry, 2011 , 21, 16335		15
24	Dialkoxy functionalized quaternary ammonium ionic liquids as potential electrolytes and cellulose solvents. <i>New Journal of Chemistry</i> , 2011 , 35, 1596	3.6	48
23	Self-Assembly of Ionic Liquids and Metal Complexes in Super-Cages of NaY: Integration of Free Catalysts and Solvent Molecules into Confined Catalytic Sites. <i>Chinese Journal of Catalysis</i> , 2010 , 31, 93	3 ⁻¹ 9 ¹ 3 ³ 7	4

(2005-2010)

22	Nanocomposites of ionic liquids confined in mesoporous silica gels: preparation, characterization and performance. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 1971-81	3.6	67
21	Co(acac)3/BMMImCl as a base-free catalyst system for clean syntheses of N,N?-disubstituted ureas from amines and CO2. <i>Science China Chemistry</i> , 2010 , 53, 1534-1540	7.9	21
20	Enhanced and reversible contact angle modulation of ionic liquids in oil and under AC electric field. <i>ChemPhysChem</i> , 2010 , 11, 2327-31	3.2	19
19	The influence of the acidity of ionic liquids on catalysis. <i>ChemSusChem</i> , 2010 , 3, 1043-7	8.3	47
18	Novel cyclic sulfonium-based ionic liquids: synthesis, characterization, and physicochemical properties. <i>Chemistry - A European Journal</i> , 2009 , 15, 765-78	4.8	63
17	Photochromism of spiropyran in ionic liquids: enhanced fluorescence and delayed thermal reversion. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 6012-9	3.4	39
16	Long-chain alkylimidazolium ionic liquids, a new class of cationic surfactants coated on ODS columns for anion-exchange chromatography. <i>Journal of Separation Science</i> , 2008 , 31, 2791-6	3.4	23
15	Greatly enhanced fluorescence of dicyanamide anion based ionic liquids confined into mesoporous silica gel. <i>Chemical Physics Letters</i> , 2008 , 461, 229-234	2.5	36
14	Synthesis of dialkyl hexamethylenedicarbamate from 1,6-hexamethylenediamine and alkyl carbamate over Y(NO3)3IbH2O catalyst. <i>Journal of Molecular Catalysis A</i> , 2008 , 296, 36-41		23
13	Novel Ionic Liquid Crystals Based on N-Alkylcaprolactam as Cations. <i>Chemistry of Materials</i> , 2007 , 19, 2544-2550	9.6	37
12	Physicochemical properties of nitrile-functionalized ionic liquids. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 2864-72	3.4	119
11	Solubilities of the Gaseous and Liquid Solutes and Their Thermodynamics of Solubilization in the Novel Room-Temperature Ionic Liquids at Infinite Dilution by Gas Chromatography. <i>Journal of Chemical & Chemical</i>	2.8	122
10	Synthesis of carbamates from aliphatic amines and dimethyl carbonate catalyzed by acid functional ionic liquids. <i>Journal of Molecular Catalysis A</i> , 2007 , 271, 89-92		50
9	Developing effective catalyst system for reductive carbonylation of nitrobenzene based on the diversity of ionic liquids. <i>Journal of Molecular Catalysis A</i> , 2006 , 244, 64-67		28
8	Ionic liquid as an efficient promoting medium for fixation of carbon dioxide: a clean method for the synthesis of 5-methylene-1,3-oxazolidin-2-ones from propargylic alcohols, amines, and carbon dioxide catalyzed by Cu(I) under mild conditions. <i>Journal of Organic Chemistry</i> , 2005 , 70, 7376-80	4.2	93
7	From CO oxidation to CO2 activation: an unexpected catalytic activity of polymer-supported nanogold. <i>Journal of the American Chemical Society</i> , 2005 , 127, 4182-3	16.4	219
6	Efficient and eco-friendly process for the synthesis of N-substituted 4-methylene-2-oxazolidinones in ionic liquids. <i>Tetrahedron Letters</i> , 2005 , 46, 5907-5911	2	52
5	Silica Gel Confined Ionic Liquid+Metal Complexes for Oxygen-Free Carbonylation of Amines and Nitrobenzene to Ureas. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 225-230	5.6	37

4	Silica-gel-confined ionic liquids: a new attempt for the development of supported nanoliquid catalysis. <i>Chemistry - A European Journal</i> , 2005 , 11, 5279-88	4.8	196
3	Development of Ionic Liquids as Green Reaction Media and Catalysts. <i>Catalysis Surveys From Asia</i> , 2004 , 8, 179-186	2.8	41
2	Accelerating the discovery of energetic melt-castable materials by a high-throughput virtual screening and experimental approach. <i>Journal of Materials Chemistry A</i> ,	13	4
1	Preparation of polysiloxane coating for laser application with improved curing property based on copolymerization modification. <i>Journal of Coatings Technology Research</i> ,1		Ο